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The shallow water equations in spherical geometry provide a first prototype for
developing and testing numerical algorithms for atmospheric circulation models.
Since the seventies these models have often been solved with spectral methods. In-
creasing demands on grid resolution combined with massive parallelism and local
grid refinement seem to offer significantly better perspectives for gridpoint methods.
In this paper we study the use of Osher’s finite-volume scheme for the spatial dis-
cretization of the shallow water equations on the rotating sphere. This finite volume
scheme of upwind type is well suited for solving a hyperbolic system of equations.
Special attention is paid to the pole problem. To that end Osher’s scheme is applied
on the common (reduced) latitude-longitude grid and on a stereographic grid. The
latter is most appropriate in the polar region as in stereographic coordinates the pole
singularity does not exist. The latitude-longitude grid is preferred on lower latitudes.
Therefore, across the sphere we apply Osher’s scheme on a combined grid connect-
ing the two grids at high latitude. We will show that this provides an attractive spatial
discretization for explicit integration methods, as it can greatly reduce the time step
limitation incurred by the pole singularity when using a latitude-longitude grid only.
When time step limitation plays no significant role, the standard (reduced) latitude-
longitude grid is advocated provided that the grid is kept sufficiently fine in the polar
region to resolve flow over the poles.g 2000 Academic Press

Key Words:numerical solution of PDEs; atmospheric flow; SWEs in spherical
geometry; Osher’s scheme; stereographic coordinates.

1. INTRODUCTION

People have long tried to forecast the weather, first by observation of current and histor
meteorological data and later by numerical simulation with circulation models based
atmospheric primitive equations [4, 7, 10, 12]. Today, circulation models are widespre
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In addition to being used in weather forecasting, they are applied as climate simulaf
models and provide meteorological input data needed in air pollution descriptions.

During the sixties the field of frequently used approximation methods in circulation mo
els consisted mainly of gridpoint methods. When Orszag and Eletsfi6, 13] introduced
the spectral transform method in global atmospheric modeling, this accent shifted. Bec:
spectral methods proved to be very accurate and cost efficient, they started to dominat
field of approximation methods used in global atmospheric modeling. Recently the disc
sion on numerical methods applicable in circulation models has been renewed. Spe
methods are no longer considered ideal. Progression in atmospheric modeling, onthe n
orological as well as on the computational side, demands higher grid resolutions than ir
past. The workload of a spectral method grows very fast when the number of gridpoint
increased. Therefore, the relevant question can be posed whether at high resolutions a
proved gridpoint method can compete with a spectral method. Thisis also stated in [3, 5
addition, the global property of a spectral method has some other drawbacks. Although
property contributes highly to the accuracy of the found solution, it leads to inconvenien
when one tries to parallelize spectral codes on parallel machines with distributed mem
Furthermore, a spectral method can suffer from Gibb’s phenomena (spectral ringing) w
applied in areas where flow patterns with strong gradients are encountered, for exampl
front simulation.

In this paper we develop a new numerical gridpoint method. We apply a finite volur
method of upwind type. We decided on this method, because it is conservative and resy
the characteristic directions associated with the hyperbolic character of our equation:s
addition, compared to a spectral method, it behaves well in areas where flow patterns
strong gradients are expected. From the class of finite volume methods, Osher’s approxi
Riemann solver makes a good choice. First, it is robust and second-order accurate v
combined with the right state interpolation. Second, from a future perspective, it ha
logical extension to more realistic primitive equations and it has a consistent bound
treatment, which makes Osher’s solver preferable to, for instance, Roe’s solver. Fing
our upwind scheme is a scheme of flux difference splitting type (FDS). Schemes of f
vector splitting type (FVS) do not provide an alternative in this case, since the necess
condition for these schemes, i.e., that the Jacobian of the flux vector is homogeneot
degree 1, is not fulfilled. For a detailed description of FDS and FVS methods we re
to [9].

To avoid the well-known pole problem [20], which arises when a gridpoint method
applied on a full uniform latitude—longitude grid, we study a reduced lat—lon grid and
combined grid composed of a (reduced) lat—lon grid away from the poles and a stereogra
grid at the two polar caps. The combined grid consists of three computational domains \
a rectangular grid almost everywhere. All three mappings used to map the physical dor
onto the computational domain are conformal. These qualities yield flux calculations t
are simple and straightforward. The use of a stereographic grid has been proposed b
by Phillips [16] and Browninggt al.[2].

To validate our discretization scheme and grid, we consider the 2D shallow water ec
tions (SWESs) on the rotating sphere, which serve as afirst prototype for a circulation mo
The SWEs describe the behavior of a shallow homogeneous incompressible and invi
fluid layer. Although in comparison to the full set of atmospheric primitive equation
the SWEs are incomplete, they present some of the major difficulties associated with
horizontal dynamical aspects of circulation models on the earth.
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In Section 2 we focus on the formulation of the SWEs in the two different coordina
systems. In Section 3.1 we attend to the construction of our combined grid. The spe
discretization of the equations, i.e., a description of our finite volume method, is giv
in Section 3.2. Special attention is paid to the connection problem, which occurs at
grid interface, when coupling the spherical grid part with the stereocaps. Numerical res
from calculations on combined grids and on fully lat—lon grids are given in Section
Calculations are done on test case 2 of the test set in [27], which is standard for tes
new numerical methods for solving the SWESs in spherical geometry. Test case 2 provi
us with a good nonlinear test to evaluate the scheme’s ability to handle the poles. Si
the test set consists of problems with smooth flow patterns, it does not provide a tes
reveal all favorable features of our scheme. Therefore, the objective of this paper can
be summarized as a first validation of whether the Osher scheme applied on a comb
grid yields an appropriate candidate to solve the SWEs in spherical geometry. The i
conclusions of our investigations are formulated in Section 5.

2. THE SHALLOW WATER EQUATIONS

Since they cover important aspects of the horizontal dynamical behavior of the atr
sphere, the SWEs on the sphere suffice as a first prototype of a circulation model. Thro
the laws of conservation of mass and momentum, the SWEs on the sphere can be deriv
describe the behavior (velocities and fluid depth) of a shallow homogeneous incompr
ible and inviscid fluid layer on the earth. In other words, we assume that the atmospf
can be regarded as a thin layer of air in which the density is uniform and constant,
viscous effects can be ignored. By using the SWEs, it is further assumed that the velo
component normal to the earth surface, the vertical component, can be neglected comg
to the horizontal velocity component. Furthermore, the vertical component of the Coric
acceleration is neglected in comparison with gravity. The acceleration of grgyityas-
sumed to be constant, containing both the effects related to the centrifugal force and
gravitational attraction of the earth. The pressure gradient force is considered to be hy
static. The SWEs then follow from the Navier Stokes equations on the rotating sphere
integration over the fluid depth (depth-averaging); for details see [7]. A derivation of mc
realistic atmospheric primitive equations can be found in [7, 10].

2.1. The Shallow Water Equations in Spherical Coordinates

Let (1, ¢,t) denote the independent variables longitudes ([0, 27)), latitude ¢ €
[-5.+%]), and time { > 0). Letu be the velocity in the longitudinal directiom, the
velocity in the latitudinal direction, and the depth of the fluid layer. Létbe the height of
the free surface above the sphere at sea lavel,H + hg, wherehg accounts for the orog-
raphy of the earth associated with the height of mountains. Furtherdehote the hori-
zontal velocity fieldu, v) defined byu = acos¢‘c‘,—§ andv = a%”. Let f denote the Coriolis
parameter,  sing, with Q the angular velocity of the earth,the radius of the earth, and
g the gravitational constant. The SWESs on the sphere in flux form can then be formula
as

oH

StV (Hw =0, (2.1)
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dHu u gH oh
—+V-(H =(f+-t Hv — — 2.2
ot +V-(Huy < ~|—aan¢) v acose or’ (2:2)
oHv u gH oh

V. = — — - — .
at + V- (Hvu) <f+atan¢>> Hu 2 90’ (2.3)

where the divergence operator is defined by

1 0 dv Co
V.u= {u_'_v Sﬂ.

acosg | ar A

The right-hand sides in the momentum equations (2.2) and (2.3) represent, respectively
Coriolis force, the hydrostatical pressure gradient force, and an additional term due to
relative motion in the rotating coordinate system in longitudinal and latitudinal directio
see [10].

2.2. The Shallow Water Equations in Stereographic Coordinates

The spherical formulation of the SWEs (2.1)—(2.3) has the disadvantage that it is sing
at the poles. To circumvent this problem, the SWEs can be formulated in the stereogra
coordinate system using a different stereographic projection on each hemisphere. S
these projections are only singular in opposite poles, no singularity problem arises.
note that the stereographic projection is conformal, so the general form of the equatior
preserved.

The stereographic projection in terms of the latitude-longitude coordinates is definec

Xst = @ MCOS¢ COSA, (2.4)
Yst = 2 Mcosg SinA, (2.5)
wherem is the map factor
2
m=_— 2.6
1+ asing (2.6)

with « distinguishing between the northemn £ 1) and the southern hemisphere projectior
(e« = —1). The poles are directly projected onto the origin of the stereographic planes.
northern hemisphere is projected from the south pole onto the northern stereographic p
which is the plane locally tangent to the sphere at the north pole; see Fig. 1. Likewise,
southern hemisphere is projected from the north pole onto the southern stereographic p
which is locally tangent to the sphere at the south pole. A description of the construct
of the stereographic projection can be found in Appendix A of [11]. Note that the positi
stereographics; axis for both the northern and the southern hemisphere corresponds v
the intersection of the half-plar&_q and the corresponding stereographic plane. Likewise
the positive stereographig; axis corresponds, for both hemispheres, with the intersectic
of the half-planeS _;,» and the corresponding stereographic plane. Before we give tl
SWEs in the stereographic formulation, as found, for instance, in [2, 16, 26], we neec
define the velocity field in the new stereographic coordinate syster. ketU, V) be the

velocity field in stereographic coordinates wiihthe velocity in thexg; direction andv the
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Xt

FIG. 1. The stereographic planes for the northern and southern hemisphere projections.

velocity in y direction. We have
u -G
U = V = _1dyt ,
Mg

where%, % are the usual total derivatives aﬁds a scale factor witin as given in (2.6).

When we now consider the momentum equations in the stereognaparayy; directions,
the stereographic formulation of the SWEs in flux form reads

JoH
3HU (Xstv_ystu) 8h
—— +V.(HUU) = |af — —————"|HV —mgH—, 2.8
ot TV (HUY) {“ 2a2 } I e (2.8)
oHV (XStV_yStU) oh
—— +V-(HVU) = — |af - —————"|HU —mgH—, 2.9
otV v = faf - Sy _monE 29
where the divergence operator is defined by
o (AU o [(AV
V- (AU =m?— [ — 2 — ). 2.10
(AL maxst<m)+m3)/st(m) ( )

This formulation is derived in Appendix B of [11].
To complete the discussion on the two different coordinate systems, we here give
relations between the stereographic and spherical velocity components,

U = —usinA — av COSA, (2.11)
V = ucosk —avsina. (2.12)

These relations, which of course are valid only outside the poles, are needed in Section 3
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3. SPATIAL DISCRETIZATION

In the past, several types of grids have been proposed to circumvent the problems re
to solving the SWEs on a global lat—lon grid. Two examples are the composite cubic ¢
[17, 18] and the icosahedral grid [24]. The first yields a nonconformal mapping of the sph
onto a cube. The latter grid consists of triangles.

In this section we introduce another grid. Our motivation is to provide a grid on whic
calculations are simple and straightforward. Therefore we aim at a grid distribution wh
can be conformally mapped onto a rectangular computational domain without any sing
points.

3.1. Using Stereographic Grids

Over the years several suggestions have been made to circumvent the singularity
lem which arises at the poles when one tries to solve the SWEs in spherical coordine
In 1956 Phillips [16] studied this problem. He suggested covering the sphere with th
different coordinate systems. On part of the northern as well as on the southern he
sphere he used a stereographic coordinate system centered at the poles. In between
two regions he chose a mercator projection. His distribution of the coordinate system
illustrated in Fig. 2a. To couple the different coordinate systems, Phillips had to interpol
from points in neighboring grids whenever a variable outside the current grid part v
needed. In 1975 Stoker [22] showed that these interpolations could contribute to los:
mass.

In 1977 Starius [21] introduced the composite mesh method. Like Phillips, he us
multiple coordinate systems, but he avoided interpolations within neighboring grids
letting the grids, corresponding with the different coordinate systems, overlap. To pr
per from both methods, Browningt al. [2] combined the ideas of Starius and Phillips.
They applied the composite mesh method to the SWEs by using two stereographic c
dinate systems centered respectively at the north and south pole and extended beyor
equator.

Our approach is also based on the ideas of Phillips; that is, we use three different nonc
lapping coordinate systems, where stereographic coordinate systems are applied it
northern and southern polar areas. In the intermediate region, however, our choice o

= <o
N

N =

(a) (I) northern hemisphere stereographic projection (b) () northern hemisphere stereographic projection
(II) mercator projection (I1) spherical coordinate system
(IIT) southern hemisphere stereographic projec- (III) southern hemisphere stereographic projec-
tion tion

FIG. 2. Distribution of the three different coordinate systems in Phillips’ approach (a) and our approach (b
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coordinate system differs from Phillips’. Since spherical coordinates are natural and ea
implemented in regions away from the poles, we prefer a spherical coordinate syster
the intermediate region. Furthermore, lat—lon grids are still standard in meteorological
plications. A further differentiation from the Phillips method concerns the coupling of tr
different coordinate systems. Although this subject is not addressed until Section 3.2,
state here that with our choice of a finite volume method we are able to avoid the inter|
lation problems found by Phillips. Our distribution of the coordinate systems is shown
Fig. 2b.

In this paragraph we discuss the exact distribution of the three different coordinate s
tems across the sphere. As mentioned before, we prefer to use a lat-lon grid in a re
away from the poles. We define this regionRs= {(A, ¢, a): A € [0, 27), ¢ € [—, ¢]
with ¢ < Z}. From an illustrative point of view we assume that our lat-lon grid has
uniform distribution. Note that more advanced grid distributions are possible. In Sectior
for instance, we apply a reduced lat—lon grid. To find a suitable grid distribution in tt
stereographic regions, we project the uniform lat—lon grid of red®pronto the stereo-
graphic planes, as illustrated for one hemisphere in Fig. 3. Note that meridians and para
correspond with respectively dashed and solid lines. In the middle of the resulting p
jection we place a square with bottom left-hand coroey, ysp = (—X, —%) and top
right-hand cornei(xs;, Ysp = (X, %), X > 0. The corresponding regions on the sphere
are denoted by region | (northern hemisphere) and Ill (southern hemisphere). To secL
proper fit between the grids on regions |, Ill, aRg, we extend the projected meridians
until they intersect with the squares. The resulting cells between these regions are a
to region R giving the region Il shown in Fig. 2b. The solid lines in Fig. 4 corresponc
with the cell edges. We then demand tizNt defined asN, = ﬁ is a multiple of eight.
Under this condition the intersection points have mirror images on the opposite edge.
ter these points are connected, a nonuniform rectangular grid distribution on the sqt
results; see Fig. 4a. The total grid distribution over the sphere is now fully known; s
Fig. 4b. Finally, we remark that., N, and¢ are still free parameters. Exact values are
given for each test case. These values affect, for instance, the CFL number, the meshv

yst

2a

FIG.3. Northern hemisphere projection from the south pole of a uniform lat—lon grid. Dashed lines correspc
with meridians { constant). Solid lines correspond with parallelscpnstant).
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(a) Northern hemisphere stereographic projection (b) Side view of the grid over the northern hemi-
of the grid. sphere.

FIG. 4. Different views of the grid distribution over the northern hemisphere.

factors, and the accuracy. For visualization purposes we Mged 56, x; = 0.32279a,
and¢ = 57.8°.

3.2. The Semi-Discrete System in General Terms

Without the Coriolis and additional forces, the SWEs closely resemble the Euler eq
tions, which can be found in, for instance, gas dynamic applications. For the full set
primitive equations this resemblance is even more explicit. Much theory concerning
space discretization of the Euler equations has already been developed; see, for inst
[9]. In our approximation method we gratefully adopt existing ideas from this theor
In this section we will describe the semi-discrete system for the SWEs (2.1)—(2.3) &
(2.7)—(2.9) with special attention to the coupling between the spherical and stereogra
grids.

3.2.1. Main Outline of the Finite Volume Method

We begin this section with a main outline of our method. To guarantee conservatior
mass and momentum in our semi-discrete system or, in other words, to respect the under
physical conservation laws, we use the finite volume method, which is standard practice
the Euler equations. We focus on the stereographic region I. Similar results can be der
for the spherical region Il and for region lll. Calculations are done in the computatior
domain, which results after projection of regions I, Il, and Il on the regions associated w
the corresponding coordinate systems. In the computational domains regular, (non-)unif
rectangular grids occur.

Let @; ; be a grid cell with boundary<2; ;. We denote its four neighbors I§¥% .. j and
Qi j+1. The boundary between two neighboring cells, for instance, bet@egn and<; j,
is denoted by 212 ;. N1z = (Nxg Nyy) is the outwardly directed unit normal along
this boundaryAx; j andAy; ; are respectively the lengths 8®; j+1/> andéQi11,2 j; see
Fig. 5. We associate with each grid cell its cell CEIXEE = (Xst;» Yst ;) With state variable
gi.j = (Hij, Hi,jUij, Hij Vi j) and we assume that the state variable is constant over ez
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l‘li-i»l/2xj

ys!

Xt

FIG.5. The grid cell; ; in the stereographic coordinate system.

cell. The finite volume method now gives

aqi | mizj 1 1
= : —Fn —Gny, dS=—(f ijs Xst f ijs Xst, ) )s
st T AXi jAYij ffmi,j m- e T2 e (fxst(gtl *s,,) +7yst(9"1 Xsi,,))

(3.1)

whereFandG are the fluxes in stereographig andysy; direction,
1 T

F@ = (Hu, HU2+§gH2, HUV) ,
1 T

G(Q) = (Hv, HUV, HV? + égH2> ,

and
XtV —ysd)
2a2

_ (xstV —yslU)
2a2

dhs 1, T
IX51(97X—St) = O,— C\!f HV+mgHﬁst+EgH Xst,o s

h 1 T
}HU+mgHas+ gHZYSt).

f , =(00, |af —
@ = (00,0 v+ 2

To respect the characteristic directions associated with the hyperbolic character of
equations, we apply an upwind scheme to discretize the integral in (3.1). Within the grc
of finite volume upwind methods we distinguish two different categories, concerning fl
vector splitting (FVS) and flux difference splitting (FDS) methods. For a detailed descri
tion of both methods we refer to [9]. Methods from the first category do not suffice
discretization schemes when applied to the SWEs. The condition that the Jacobian of
flux vectorEwith respect t@ is homogeneous of degree 1 (see [9]) is not fulfilled. We appl:
Osher’s approximate Riemann solver [14, 15], which makes an excellent choice from
group of FDS methods. Osher’'s scheme is robust and second-order accurate, when |
bined with the right state interpolation [23]. Furthermore, from a future perspective, it ha
logical extension to more realistic primitive equations and a consistent boundary treatm
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The last argument made us decide in favor of Osher’s approximate Riemann solver be
Roe’s, which is often used in gas dynamics applications.
The semi-discrete system reads

99, mizi -1 L R AYij
= : T Fio (T ., T P >
8t AXIJAyI,J |: (O)—(o)( (O)gH—%‘,J’ (0)9I+:—2l,])mi+%.j
(7 T\ T\ R AXi
+T (E)F(O) (T <E>9i,j+§, T (E)_qi,j+§> m i1
_ AYij
+T 1<n>E(o>(T<n>giL_%,j,T(n)g?_%,j)mi_';j
3r 3 37 AX i
Y Rl P4 L 9T\ R i,
(G R (T(F )T (5 ) )]
=—(f (@ xsty ) + F (G Xt ) (3-2)
whereT (0) is a rotation matrix defined by
1 0 0
TO) =0 cos® sind (3.3)
0 —sind cosp
andF g, is the Osher flux given as
L AR 1 L R 1 gR
Fo@.a") = 5E@) +E@) - E/qL |A(Q)]dg. (3.4)

A is here defined as the Jacobian of the fluxvegtwith respect tag, A = dF/dg. The
absolute value of this Jacobian is defined by

|A@)] = P@|AIP~(Q),

whereP andA result from diagonalizing the Jacobian matrixss- PA P~1. Note that the
Osher fluxes in (3.2) describe local fluxes; i.e., they point in the direction of the outwarc
directed unit normal on the corresponding boundary. The Osher flux (3.4) approximates
local flux across a boundaéy2, which results when at the left and the right of this boundan
the constant stateg andgR are found.

So far, we have not mentioned the evaluation of the constant states. It is through tt
evaluations that we are able to properly couple the different grids. Furthermore, the s
evaluations determine the accuracy of our scheme. On a uniform grid, second-order acct
can be proven [19]. We attend to this topic in the next section. It remains to say that
Osher scheme is special for its choice of the integration path in its flux (3.4). Using the Os
flux boils down to a maximum of five flux evaluatiorts(g), per cell boundary. In the case
of the most common atmospheric flow patterns, i.e., flows where we|bave./gH, we
find that the Osher flux requires only one flux evaluation per cell boundary, when we use
P-variant Osher path suggested by Hemker and Spekreijse [8]. Details of the construc
of the integration path and the Osher flux can be found in Appendix C of [11].
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3.2.2. Determination of the Constant States

In this section we define the constant states. We still focus on the stereographic re
zooming in on the state evaluation in tkeg direction. The states in thg; direction are
defined in a similar way. We apply 1D state interpolation; i.e., the _xq’ltgt%eJ only depends
on the states of neighboring cells in thgdirection. For the remaining part of this section,
we suppress the indgxin our notation. To define the constant states, we usethe 1/3)
scheme [23]. On a uniform grid it reads

1- 1
9iL+; =q + ( 4K) @ —g-1)+ ( ZK) @i+1—9),
’ (3.5)
1- 1
9iR+% =0i+1+ ( 4K)(9i+1—9i+2) + ( :K) @ — Gi+1)-

Unfortunately, our grid in the projected stereographic region is nonuniform. When t
grid is sufficiently smooth, this discrepancy is often circumvented by simply applying t
existingx scheme (3.5). Although this condition holds for our grid, we do not adopt thi
approach. We wish to avoid any additional errors which might prevent us from prope
identifying the influence of the coupling between the different grids. Therefore, we ha
applied a modification of the scheme (3.5) for nonuniform grids. The general form of this
modifiedx scheme can be found in Appendix D of [11] for different values.dfhe general
form is defined as a function,, with the states and cell widths of neighboring grid cells
in the interpolation direction as arguments. The standard nonuniform state interpolatio
represented in Table .

Near the grid interface between the stereographic and the spherical region (see Fig.
the stencil of the nonuniformy(= 1/3) scheme is too large, demanding state variables fror
outside the stereographic region. To avoid transformations and difficulties associated \
the kink in the grid cells, we regard the grid interface as a real boundary. This means 1
locally we have to reduce the size of our stencil. To that end we have also formulated
nonuniform equivalents of the 2-point centfal= 1) scheme, the 2-pointupwird = —1)
scheme, and the 3-point upwirnid = 1/2) scheme. Figure 6 shows which interpolation
scheme is applied on each cell boundary. The associated state interpolations are giv

TABLE |
The Different State Interpolation Methods Used Near the Grid Boundary

Left Right
A gL% = Transformation 9;% = 1_1(On-1. On. Eno1. En)
9?21 = 1_1(02, 1, L2, £1) 9E+l = Transformation
B 9"% = 11(Qs, 9o, €1, £2) 9','\‘7% = I%(gN—ngN—lvng[N—ZyZN—LZN)
9% = |%(93, 92, G, 43, L2, £1) 927% = 11N, In-1, €N, On-1)
c QL% = |%(91, 92, 93, 41, L2, £3) 92_% = |%(9N,9N71,9N72»€N,ZNflyszz)
o 9|L+% =11 (Gi-1, Gi> Givas bi-2, bioa, G, Ligas Giv2),

1
3
Q. = 11 @ivz Qivas O Livas bivz, i, G, i)
2

—i+

Note.The indices A, B, C, and D here correspond with the different cell boundary situations
illustrated in Fig. 6.
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1 2 7 N-1 N

X

FIG. 6. lllustration of the cell boundaries, where interpolation scheme other than standard is needed.

Table I. Note that although it is a 3-point interpolation scheme, the: ((/3) scheme,
as opposed to ther (= 1/2) scheme, cannot be applied at the cell boundaiigs, and
8Qn-3/2, because inthese cases a cell width from outside the stereographic region is nee
In the next section, we will discuss the transformation entry in Table I.

3.2.3. The Finite Volume Method and the Constant States on the Spherical
Computational Domain

The same line of semi-discretization as described in Section 3.2.1 is applied to de
the semi-discrete system for region Il; see Fig. 2b. Note that for this region calculations
done on th&x, ¢) plane. The semi-discrete system easily follows through Egs. (3.2)—(3.
when we replacen; j, AX j, Ay j, jxst, IYSt, andq successively by Aacosg j), Ak j,
A¢i’j,jx,j¢, andg = (H, Hu, Hv), where

gH ohg 0 T
acosp dr’ ’

gstin¢+gH ahs\ "
2a.cos¢p a dp )

u
fA(q,r)=(O,—(f+atan¢)Hv+
f — (0.0, (f+Ytang |H
7¢(9’[) - k] k) +5 and) u+

Note that the form of the flux vectolsandG remains the same, since both coordinate
systems are conformal.

To evaluate the constant states on region Il we again use 1D state interpolation. -
time it concerns interpolation in theor ¢ direction depending on the cell boundary under
consideration. As standard interpolation scheme(the: 1/3) scheme is applied. In the
A direction this scheme can be applied everywhere, because, in that direction, our gr
uniform and has no grid boundaries. In thedirection we have to account for the grid
interface between the spherical and the stereographic grids. We treat this interface as
concerns a piecewise constant real boundary approximating the cell boundaries by the
¢ = ¢i.n,+1/2; S€€ Fig. 7. The resulting, partially nonuniform grid distribution resemble
the one in the stereographic direction. Therefore, the associated state interpolations e
follow by applying Table | in thep direction.

3.2.4. Interaction between the Different Computational Domains

Itremains to discuss the transformation entry in Table I. We again turn to the stereogray
computational domain associated with region | and focus onxdtdirection; see Fig. 6.
At the grid interface between region | and Il the computational domains of these regic
interact. To find the stategﬁ/z andgff,Jrl/2 in stereographic variables, we transform the state
in spherical variables found at the same cell interface boundary in the computational don
associated with region Il. The word “transformation” here indicates that we must conv
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FIG. 7. Projection of the northern hemisphere part of region Il on(thep) plane in combination with the
approximated cell distribution at the grid boundary.

the velocity fieldu= (u, v) into its stereographic representation. Note that the consta
states in spherical variables are calculated by one-gided —1)-state interpolation in the
¢ direction. This way of state evaluation yields that at every cell interface boundary, t
1D state interpolation to obta'r_qi,;/2 andgﬁH/2 is performed in a different direction, i.e.,
in the direction of the projected meridiains,» andin1/2. In the case of interpolations
in the ¢ direction, the transformation entries, i.g:';,2 andg§¢+l/2 in spherical variables,
follow after transformatoin of the corresponding constant states in stereographic varial
found at the same cell boundaries in the computational domain of region I. Here the w
“transformation” means that we must convert the velocity figld (U, V) into its spherical
equivalent. Note that, depending on the cell’'s position, the constant state in stereogra
variables concerns a constant state calculated by one-sided<(1)-state interpolation in
Xst OF Yt direction.

We conclude this section with some remarks on accuracy. In more dimensional proble
a finite volume method is at most second-order accurate. To provide an order estimate
cite Spekreijse [19]. For a uniform grid, he proved, that a scheme like (3.2) is second-or
accurate for interpolations based onthecheme. On a large part of our domain, i.e., almos
everywhere on the spherical region (see Section 3.2.3), his estimate is valid, because
grid is uniform. However, since we combine different grids, it is difficult to give the exac
order of our scheme across the whole sphere. Itis obvious that we endure some accurac
around the interface, which will be referred to as the connection problem. To be conclus
about its severity, we will give a numerical order estimate in Section 4.

4. NUMERICAL TESTS

In this section we focus on two main objectives. First, we wish to establish to what exte
the introduction of the stereographic grid resolves the problems related to the use of a gl
spherical coordinate system. Second, we wish to validate our spatial discretization sch
or, in other words, how Osher’s scheme behaves, when applied to the SWESs on the spl
and how accurate its results are.

To meet the necessity of a good benchmark to test new numerical methods for sol
the SWEs in spherical geometry, Williamsenal. [27] developed a test set, containing
seven different test cases of increasing complexity. We concentrate on test case 2 of thi
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set, i.e., on the global steady state nonlinear zonal geostrophic flow. Test case 2 provid
with a good test to examine the scheme’s ability to handle the poles. Furthermore, it se
as a test for our Osher scheme, since it includes nonlinear aspects of the SWEs. As |
for the whole test set, test case 2 is not entirely appropriate to demonstrate all favor:
features of our scheme, i.e., its behavior around strong gradients. The problems in the
set have solutions with rather smooth flow patterns. Hence itis suitable for a first assessi
of accuracy behavior. Besides test case 2, we successfully solved test cases 1 and ¢
advection of a cosine bell over the pole and the Rossby—Haurwitz wave. To save spac
present results only for test case 2. In future work we will attend to the other cases.

4.1. Test Case 2: Global Steady State Nonlinear Zonal Geostrophic Flow

Test case 2 concerns a steady-state analytic solution to the non-linear SWEs. It con
of a solid body rotation with the corresponding geostrophic height fielé parametet
is used to specify the angle between the axis of the solid body rotation and the polar axi
the spherical coordinate system= 0 indicates equatorial flow and = 7 /2 yields flow
across the pole. The analytic solution of test case 2 reads

aQuy U3 . .
H=hy— ( a 0 + 2—;) (—cosh cos¢ sina + sing cosx)?, (4.2)
U = Up(COS¢ COSa + Sing COsA Sina), 4.2)
v = —Up SinA sine, (4.3)

where the Coriolis parametér= 22 (—cosA cos¢ sina + Sing cosw) andug = 38.61 m/s,

ho = 3.00 x 10> m. To be consistent with the article of Williamsetal.[27], we tested our
code fora = 0, 0.05,7/2 — 0.05, andr /2, where the second and third parameter value
were added to avoid symmetries. In this article we will not present all the results, as our ¢
produced good results for either value. We will concentrate on tests with parameter ve
o = 1 /2, since for these tests the corresponding velocity components initiate the stron
flow across the poles. We remark that these kind of flows can indeed be encountere
practical situations.

In addition to the fact that we encounter a singularity problem when we apply the spheri
formulation of the SWEs in the poles, we have to deal with some problems when approacl
the poles. Figure 8 clearly illustrates the demand for additional caution near the poles.
figure represents the analytic longitudinal and latitudinal velocity componerasd v,
found in the cell centers of an underlying uniform lat—lon grid in case of flow across tl
poles ¢ = 7 /2). To emphasize our point we give the velocity componeargadv, which
follow from (4.1)—(4.3),

U = Ug Sing cosA, (4.4)

v = —Up SiNA. (4.5)

The figure shows that the spherical velocity components strongly vary in the polar a
bringing about difficulties in numerical approximation methods. To properly represent the
velocity components, a fine grid resolution, especially in the longitudinal direction, is ne
essary. However, too many grid cells can lead to problems for integration methods rel:
to stability.
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FIG. 8. Representation of the analytic longitudinal velocity componefhft) and latitudinal velocity com-
ponentv (right) on a global uniform lat-lon grid in case of global steady-state nonlinear zonal geostrophic flc
across the poléx = /2).

We discuss two remedies to these approximation and stability problems. First, we |
decide to solve the SWEs on a stereographic grid. On a stereographic grid no severe re
tion problems arise, as the velocity componédntandV vary much less than the spherical
ones; see Fig. 9. Second, we can consider the reduced grid approach. In that case, the I
grid is coarsened in the longitudinal direction at given latitudes (for details, see [1, 2&
Both remedies suffer some problems though. On a stereographic grid, we are confrol
with a connection problem at the equator when we try to combine the stereographic g
on the northern and southern hemispheres (see Fig. 9). On a (nearly) global lat—lon grid
are not allowed to apply the reduced grid approach to its fullest extent. Repeated reduct
to arrive, for instance, at four remaining grid cells next to the poles are inadmissible, sil
in that case the grid near the poles is too coarse to represent the strongly varying velc
components. With a combination of both remedies, i.e., a combined grid with a reduc

FIG.9. Representation of the analytic stereographic velocity compokhk(i&st) andV (right) on a “global”
uniform stereographic grid in case of global steady state nonlinear zonal geostrophic flow across the pole.
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FIG. 10. Projection of a combined grid consisting of a reduced lat-lon grid away from the poles and
stereographic grid at the two polar caps onto the cartégiay) plane(z = 0). Two reductions were applied.

lat—lon grid away from the poles and a stereographic grid at the two polar caps, we
avoid these problems and benefit from either advantage (see Fig. 10).

In the remaining part of this section we will address the following questions concerni
our grid. Do the numerical results confirm the problems suggested when calculating
a global reduced lat—-lon grid? Which factors determine the actual form of a combir
grid, or in other words, how large should the stereocap be and how many reductions
allowed? And, how accurate are the results when calculated on a combined grid with real
refinement?

4.1.1. Experiments on Global Lat-Lon Grids

The pole singularity. For tests on a global lat—lon grid to make sense, we must accol
for the nonexistence of the spherical flu¥eandG in the poles. In practice, this problem is
overcome by assuming a total zero flux across the boundaries corresponding to the p
The question is whether the results significantly suffer from this assumption, both n
and away from the poles. In fact, when the results do suffer from this assumption,
should reconsider investigating the global reduced lat—lon grid, since the results woulc
inadequate without an accurate resolution of the singularity problem in the pole.

We first ran a set of tests on a rectangular global lat—lon grid, where we varied the amc
of gridpoints in thep direction, thus moving the neighboring cell centers closer to the po
with each test. Let nP define the amount of gridpoints inghdirection and letA¢ =
180°/nP. In comparison with other tests, our grid distribution in thdirection is rather
coarsg(nL = 72). We must only make sure that the solution can be properly representec
that direction. In this way we are able to reduce computing time and avoid problems rele
to stability. The error measures ¢hare shown in Table Il. For time stepping we used the
fourth-order Runge—Kutta method with small steps, such that the Eftbt) represents
the spatial discretization errdg, (H) is defined as a maximum relative error,

X{Hi,j —HQOi. ¢))

E/.(H) = ma
HQi, ¢j)

@.j)

)



558 LANSER, BLOM, AND VERWER

TABLE Il
Error Measures onH for Different Values of nP Taken over
the Volumes Located Next to the Poles and over the Whole
Domain on a Rectangular Lat—Lon Grid (nL = 72)

E/(H)pole band E-(H)whole
nP= 36 21-10°3 9.8.10°3
nP=72 11.10° 57-10°°
nP= 180 87.10* 531073

where H (%, ¢;) gives the analytic solution off in cell center(i, j). The max-norm is
taken over a specified region. Note that siftes> 1, the relative error provides a good
indication of the accuracy of our results.

Table Il clearly shows that in the band next to the poles the zero flux assumption does
lead to an error increase when approaching the poles. We even observe a minor deci
and the (relative) error certainly is sufficiently small for practical purposes. Moreover, t
error in the pole band is smaller than the error over the whole domain. Note that since
is fixed, convergence of the Osher scheme is not examined in these tests.

Pole resolution problem. As mentioned before and as discussed by Williamson an
Browning in [26], we encounter representation problems when we try to approximate
spherical velocity components on a too coarse grid around the poles. The following te
have been chosen to show the severity of this problem. We tested four different redu
rectangular lat—lon grids, all having () = 64 grid cells in the longitudinal direction and
nP =192 cells in latitudinal direction. nl0) is here defined as the amount of grid cells
in the longitudinal direction on the unreduced grid part. When approaching the poles,
halve the amount of grid cells in the longitudinal direction, whenever the cell width in th
direction projected onto the sphere, i&cosgp A A, is reduced with a factor two following
the last reduction. The specific values for(AL.= 64 and nP= 192 are chosen so that we
can arrive on a coarse grid within a few reductions and for each grid part, containing
same amount of grid cells in longitudinal direction, enough grid cells in latitudinal directic
are guaranteed. Successively, we apply one, two, three, or four reductions at the latitl
¢ = 60°, 759375, 82.5°, and 8625°. The errors are displayed in Table Ill. This time we
concentrate on the absolute err&g(u), found for the velocity component instead of
for H, since this component suffers the most from the inadequacy to represent the -

TABLE Il
Error Measures on u Taken over the Whole Domain on a Global Reduced
Lat—Lon Grid with Different Levels of Reduction (nL(0) = 64,nP = 192)

Ea(u) Grid partm
0 reductions, 0.32 0
1 reduction atp = 60° 1.03 -1/1
2 reductions resp. @t = 60°, 75.9375 3.67 —-2/2
3 reductions resp. @t = 60°, 75.9375, 82.5° 15.18 -3/3
4 reductions resp. @ = 60, 759375, 82.5°, 86.25° 23.99 —4/4

Note.The second column displays on which grid parthe maximum error is located.
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on a coarse lat-lon grid. Furthermore, the absolute error is shown, because the vel
component may vanish in certain points of the globe; see; (4.4) and E,&i). is defined
as the maximum absolute error

Ea(U) = maxui — (k. ¢;)].

whereu(k;, ¢;) represents the analytic velocity componarih cell center(y;, ¢;). The
maximum is taken over the whole grid, where the second column entry indicates on wr
grid partm the maximum error is found. The indexdenotes the grid part found between
the|m|th and(|m| 4+ 1)th reduction. We indicate the different grid parts at the northern hem
sphere with positive values af and at the southern hemisphere with negative values of

Given that the analytic longitudinal velocity componerttas a maximum of 38.61 m/s,
the results speak for themselves. It is obvious that a significant number of cells next to
poles are needed to properly represent the velocity components. For example, in this
and starting from nl0) = 64, two reductions giving 16 cells next to the poles already resu
in a maximum relative error in the longitudinal velocity componeiof about 10%. Note
that the maximum errors are found in the grid part closest to the pole.

Order tests. Inthis part we provide a numerical order estimate for our spatial discretiz
tion scheme. As described in Section 3.2.4, we expect to find second-order accuracy
uniform grid. To verify this, we ran some tests on a global uniform lat—lon grid. We only pe
formed calculations on a band between latituples —60° andg = 60° to avoid small steps
related to stability. On the other areas of the sphere we prescribed the analytic solution. |
that in this way accuracy losses due to the zero flux assumption across the poles are cir
vented. Successively, we applied a uniform lat—lon grid with=nlZ2, 144, 288 and 576.
Table IV shows the relative error measured-briVe consider the max-norm over the band.

The order factor between two successive grids is given in the third column of Table IV.
the case of second-order accuracy this factor should be 4. For the higher orders observe
have two possible explanations. First, the theoretical order estimate holds in the asymp
case, i.e., when nL approaches infinity. The order factor between the grids with576
and nL= 288 already approaches 4. Second, on the band between the latitude$0
and¢ = 60, the flow has a strongly one-dimensional character which coincides with t
meridians. For a uniform grid Spekreijse [19] proved that a scheme like (3.2) is third-orc
accurate for interpolations based on ttke= 1/3) scheme in the 1D case. This might
explain why on the coarser grids our order factors are close to 8. Note that the value 5.1

TABLE IV
Error Measures on H for Different Values of nL
Taken over a Band between the Latitudesp = —60°
and ¢ = 60° on a Global Uniform Lat—Lon Grid 2

ErMpangy /»
Er(H)pand “Er(Mbangy
L — 72 205.10°
nL = 144 26910 7.6
nL — 288 365.10° 74
nL =576 717-10°¢ 5.1

2Where we prescribed the analytic solution outside the band.
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TABLE V
Error Measures on H for Different Values of nL(0) Taken over the Whole Domain on a Global
Reduced Lat-Lon Grid (nP = nL(0)/2)?

Er(H) ni
Lo

E,(H) g
nL(0) =72, 3 reductions resp. gt= 60°, 70°, 80° 1.10.10°?
nL(0) = 144, 3 reductions resp. at= 60°, 75°, 82.5° 3.66-10°° 3.0
nL(0) = 288, 4 reductions resp. at= 60, 75°, 82.5°, 86.25 3.40-10°3 1.1
nL(0) = 576, 4 reductions resp. at= 60, 75°, 82.5°, 86.25° 1.74.10°3 2.0
nL(0) = 288, 3 reductions resp. at= 60°, 75°, 82.5° 1.77-10°3 2.1
nL(0) = 576, 3 reductions resp. at= 60°, 75°, 82.5° 8.81-10* 2.0

@Where grid coarsening is performed at the given latitudes.

then be attributed to the fact that on finer grids the volumes move closer to the boundar
the band, where the one-dimensional character of our flow diminishes.

In case of a nonuniform grid we have no analytic order estimate. Therefore, to g
an indication, a numerical order estimate is computed. We evaluate the results found «
calculations on a global reduced lat—lon grid. We ran four tests, each time doubling the ve
of nL(0) defined as the amount of grid cells in the longitudinal direction on the unreduc
grid part. We begin with n{0) = 72. The cell distribution in the unreduced grid part is
uniform. We again coarsen our grid each time the cell width in the longitudinal directic
projected onto the sphere is reduced by a factor 2 compared to the preceding reduc
In case of our grids, this rule yields three or four reductions. To make sure that our g
is not too coarse in regions close to the poles, we also ran test on grids wiih-a1288
and nlL(0) = 576 where three instead of four reductions were applied as was origina
prescribed by the reduction rule. The error measurell p&;(H), are shown in Table V.
This time the max-normis taken over the whole domain. The entries in the third column yi
the order factor. Per grid we give the amount of reductions and their corresponding latituc

First, the results show that the reduced grid approach leads to first-order accurac
should be noted though, that the error estimate is calculated in the max-norm over the w
domain. At the interface between the reduced grid parts we suffer from order reducti
Along the rest of our domain nearly second-order accuracy is found. Again, the grid must
be too coarse in the polar area. In case aofl= 288 with four reductions, this condition
is obviously not fulfilled, resulting in almost no error reduction. Compared to unreduc
grids—see, for instance, the entr2 x 102 from Table Il and 109 x 1072 in Table V—
the reduced grid approach results in a small accuracy loss on coarse grids. The acct
loss on finer grids will be larger since we find first-order accuracy on a reduced lat-|
grid. However, its positive influence on the stability restriction for explicit time steppin
compromises its use. As long as we take special care to guarantee an acceptable amo
grid cells next to the poles, the errors are sufficiently small for practical purposes.

We here omit an order estimate for calculations on a combined grid. As we will later shc
the results mimic the accuracy behavior found on the reduced lat—lon grids. Investigati
related to the connection problem are reported in the next section.

4.1.2. Placement of the Stereocap

As nicely illustrated by Fig. 9, in stereographic coordinates velocities over the pol
behave normal and smoothly and hence can be approximated with much greater acct
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FIG. 11. Projection of two combined grids (n& 14_4) onto the cartesi_a(x, y) plane(z = 0), where the
stereocap in the right picture is moved closer to the pple. 47.5° (left) and¢ = 87.5° (right). Along the axes,
thex andy coordinates are given as multiples of the earth radius.

using a stereocap. However, we have also concluded that to cover the whole sphe
stereographic grid must be combined with, for instance, a lat—lon grid, creating a connec
problem as examined in Section 3. In addition to the question of how this connection prob
influences the accuracy, we wish to answer the question of what value we should take
#, which we defined in Section 3.1 as the latitudinal boundary of the uniform lat—lon regi
R). We expect these questions to be related, since the Ia_rgbe smaller the cells in the
connection band. We ran four tests on a combined unreduced grid, haviadldi4 points,
i.e., withAx = A¢ = 2.5°, where we gradually change;:i Figure 11 shows the combined
grids in case of the extreme vaIues¢5fWe coupledx, defined in Section 3.1 as the;
coordinate of the top right-hand corner of the stereocaj following ¢y, = ¢ + A¢/2.

¢x, denotes the latitude corresponding to the stereographic coordinaieg) = (X, Yr).
Table VI displays the different error measuregtyu andU over five differentregions, i.e.,

TABLE VI
Error Measures on H, u, and U for Different Values of ¢ on Four Combined
Uniform Lat—Lon Stereographic Grids (nL = 144)

E:(H)lat-lon grid part ~ E-(H)equator ~ Ex(H)interface ~ Er(H)stereo grid part ~ Er(H)pole

¢ =475 1.40-101 1.35.101 4.56-1072 5.10- 102 3.86- 102
d)_: 57.5° 7.58.10°2 3.64-10°2 3.27-102 1.41.1072 7.14.10°°
<;= 67.5° 2.15.10°? 1.90-107? 1.14.107? 6.57-10°3 2.94.10°°
¢ =775 2.48.10°° 2.30-10°° 2.31-10°3 7.42-10* 3.00-10*
d)_: 87.5° 1.29.10°3 1.29.10°3 6.67-10* 6.33-10* 6.00-10*

Ea(Wiat-lon grid part Ea(Wequator Ea(Winterface ~ Ea(U)stereo grid part  Ea(U)pole
d;: 475 43.06 1745 4306 3738 60-102
¢ =575 2131 1100 2131 1919 36-102
¢ =675 5.23 239 523 343 13.10?
d;: 775 0.84 027 084 058 38.10*
¢ =875 0.14 002 014 030 28.104

Note.We give the error&, (H), E;(u), andE,(U) over five different regions, i.e., over the uniform lat-lon grid
part, over the cells located at the equator, over the interface cells connecting the two grids, over the stereogr:
grid parts, and over the cells next to the poles.
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over the uniform lat—lon grid part, over the cells located at the equator, over the interfe
cells connecting the two grids, over the stereographic grid parts, and over the cells ne
the poles. Note that the interface cells, the cells located at the equator, and the cells ne
the poles are also included in the lat—lon grid part or the stereographic parts; see Sectior
E;(H) again describes the max-norm of the relative erroHorkE,(u) andE,(U ) describe
max-norms of the absolute error arandU, respectively.

As expected, Table VI shows that it is best to make the stereocap as small as poss
restricting accuracy loss due to the connection problem at the grid interface. The influe
of reducing the size of the interface cells is particularly visible when concentrating on t
maximum absolute error of the velocities. We encounter an unavoidable accuracy reduc
at the grid interface. However, on grids with a small size stereocap this error is sufficier
small. Furthermore, both errors éhandU are impressingly small at the poles. Comparing
the overall errorg;(H) for q?: 77.5° with the second entry from Table V, we see that
our calculations on a combined grid with a stereocap result in the same overall accul
as the calculations on a compatible reduced grid. Note that this conclusion is true
modest and small sized stereocaps. For large stereocaps the interface cells becom
distorted.

4.1.3. A Combined Grid with Realistic Refinement

Figure 11 shows that our conclusion should be handled with some consideration. W
performance issues are important, the resolution increase on the stereocap due to
reduction can lead to a cut-back on the time-step caused by stability restrictions. Howe
this problem is easily resolved when we add the reduced grid approach to our combi
grid. To show this, we end our numerical section on test case 2 of [27] by giving the rest
of atest on a combined reduced grid with realistic refinements. The stereocap is placed
that¢_: 85.625", nL(0) = 576, and nP= 288. We apply three reductions, one at Gihe
at 75, and one at 8%°.

The results confirm our expectations. We find a maximum relative errdrd aver
our whole domain ofE,(H) = 8.6 x 10~* and a maximum absolute error en U of
Ea(u, U) = 0.092. These errors show that a combined grid provides a good alternative
a global reduced lat—lon grid; see Table V casél= 576 with three reductions. This
conclusion holds in particular when the CFL restriction demands a too coarse lat—lon ¢
around the poles to maintain an acceptable time-step. This follows in comparing the sma
grid sizes found on the two different grid types. Note that in either case the smallest s
size is found next to the poles. For the combined grid, the smallest grid size on the gl
approximately reads

V2racos (4.6)
r“—interface
On a reduced lat-lon grid, the smallest grid size reads
21 9 — A
acog 2 @.7)

NLinterface

Based on (4.6) and (4.7), we give the smallest grid size ratiddo= 0.625’, NLintertace = 72
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andq?: 85.625". The ratio reads

12 cosp

—= ————— ~ 495,
cog90° — Ag)

For explicit integration methods this ratio suggests a difference in computing time of
proximately a factor of 5 in favor of the combined grid. Note that the time step restrictic
can indeed be encountered in practical situations, since high-velocity components do o
in the polar areas.

5. CONCLUDING REMARKS

Spectral methods currently dominate the field of approximation methods used in glo
circulation modeling. Since spectral methods become relatively expensive on fine gr
the demand for higher grid resolution and the better prospects for parallelization and Ic
grid refinement have renewed interest in gridpoint methods. In this paper we have stu
a sophisticated finite volume scheme for the spatial discretization of the SWEs in sphet
geometry, viz., Osher's scheme [15] using Pwvariant of Hemker and Spekreijse [8] for
the integration path in the flux evaluation and third-order upwinding for the determinati
of the constant states. The scheme’s second-order accuracy, its robustness and its ¢
hension for the characteristic directions associated with the nonlinear equations, mak
a possible competitor to spectral methods for computations on fine grids. Note that in
of a combined grid, our method is second-order accurate in smooth regions away from
grid interface and first-order otherwise.

We have paid special attention to the pole singularity and the associated CFL restrict
We have examined a combined grid to thoroughly alleviate the associated problems.
combined grid connects a stereographic grid in the polar regions with a lat—lon grid u:
at low latitudes. We have found that it is best to keep the size of the stereocap ra
small to minimize connection errors at the grid interface. Since a small stereocap invol
small grid sizes at and near the cap, grid reduction in the lat—lon part can be used w
it is needed to avoid very small grid sizes. In this manner the time step limitation f
explicit integration methods emanating from the pole problem can be significantly reduc
Therefore, the resulting combined grid is advocated to be used together with an exp
integration scheme. In case time step stability plays a minor role, or when an impli
type integration method is used, we advocate using only a lat—lon grid, possibly reduc
because this approach is simpler. However, on lat—lon grids the singularity remains so
in case of flow over the poles the grid should be sufficiently fine.

Our findings are based on test cases 1, 2, and 6 of the standard test set from [27
save space we have shown results for test case 2 only. In the near future we will pre
results on time integration aspects using the spatial discretizations described in the cu
paper.
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