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The shallow water equations in spherical geometry provide a first prototype for
developing and testing numerical algorithms for atmospheric circulation models.
Since the seventies these models have often been solved with spectral methods. In-
creasing demands on grid resolution combined with massive parallelism and local
grid refinement seem to offer significantly better perspectives for gridpoint methods.
In this paper we study the use of Osher’s finite-volume scheme for the spatial dis-
cretization of the shallow water equations on the rotating sphere. This finite volume
scheme of upwind type is well suited for solving a hyperbolic system of equations.
Special attention is paid to the pole problem. To that end Osher’s scheme is applied
on the common (reduced) latitude-longitude grid and on a stereographic grid. The
latter is most appropriate in the polar region as in stereographic coordinates the pole
singularity does not exist. The latitude-longitude grid is preferred on lower latitudes.
Therefore, across the sphere we apply Osher’s scheme on a combined grid connect-
ing the two grids at high latitude. We will show that this provides an attractive spatial
discretization for explicit integration methods, as it can greatly reduce the time step
limitation incurred by the pole singularity when using a latitude-longitude grid only.
When time step limitation plays no significant role, the standard (reduced) latitude-
longitude grid is advocated provided that the grid is kept sufficiently fine in the polar
region to resolve flow over the poles.c© 2000 Academic Press
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1. INTRODUCTION

People have long tried to forecast the weather, first by observation of current and historical
meteorological data and later by numerical simulation with circulation models based on
atmospheric primitive equations [4, 7, 10, 12]. Today, circulation models are widespread.
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In addition to being used in weather forecasting, they are applied as climate simulation
models and provide meteorological input data needed in air pollution descriptions.

During the sixties the field of frequently used approximation methods in circulation mod-
els consisted mainly of gridpoint methods. When Orszag and Eliasenet al.[6, 13] introduced
the spectral transform method in global atmospheric modeling, this accent shifted. Because
spectral methods proved to be very accurate and cost efficient, they started to dominate the
field of approximation methods used in global atmospheric modeling. Recently the discus-
sion on numerical methods applicable in circulation models has been renewed. Spectral
methods are no longer considered ideal. Progression in atmospheric modeling, on the mete-
orological as well as on the computational side, demands higher grid resolutions than in the
past. The workload of a spectral method grows very fast when the number of gridpoints is
increased. Therefore, the relevant question can be posed whether at high resolutions an im-
proved gridpoint method can compete with a spectral method. This is also stated in [3, 5]. In
addition, the global property of a spectral method has some other drawbacks. Although this
property contributes highly to the accuracy of the found solution, it leads to inconveniences
when one tries to parallelize spectral codes on parallel machines with distributed memory.
Furthermore, a spectral method can suffer from Gibb’s phenomena (spectral ringing) when
applied in areas where flow patterns with strong gradients are encountered, for example, in
front simulation.

In this paper we develop a new numerical gridpoint method. We apply a finite volume
method of upwind type. We decided on this method, because it is conservative and respects
the characteristic directions associated with the hyperbolic character of our equations. In
addition, compared to a spectral method, it behaves well in areas where flow patterns with
strong gradients are expected. From the class of finite volume methods, Osher’s approximate
Riemann solver makes a good choice. First, it is robust and second-order accurate when
combined with the right state interpolation. Second, from a future perspective, it has a
logical extension to more realistic primitive equations and it has a consistent boundary
treatment, which makes Osher’s solver preferable to, for instance, Roe’s solver. Finally,
our upwind scheme is a scheme of flux difference splitting type (FDS). Schemes of flux
vector splitting type (FVS) do not provide an alternative in this case, since the necessary
condition for these schemes, i.e., that the Jacobian of the flux vector is homogeneous of
degree 1, is not fulfilled. For a detailed description of FDS and FVS methods we refer
to [9].

To avoid the well-known pole problem [20], which arises when a gridpoint method is
applied on a full uniform latitude–longitude grid, we study a reduced lat–lon grid and a
combined grid composed of a (reduced) lat–lon grid away from the poles and a stereographic
grid at the two polar caps. The combined grid consists of three computational domains with
a rectangular grid almost everywhere. All three mappings used to map the physical domain
onto the computational domain are conformal. These qualities yield flux calculations that
are simple and straightforward. The use of a stereographic grid has been proposed before
by Phillips [16] and Browninget al. [2].

To validate our discretization scheme and grid, we consider the 2D shallow water equa-
tions (SWEs) on the rotating sphere, which serve as a first prototype for a circulation model.
The SWEs describe the behavior of a shallow homogeneous incompressible and inviscid
fluid layer. Although in comparison to the full set of atmospheric primitive equations,
the SWEs are incomplete, they present some of the major difficulties associated with the
horizontal dynamical aspects of circulation models on the earth.
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In Section 2 we focus on the formulation of the SWEs in the two different coordinate
systems. In Section 3.1 we attend to the construction of our combined grid. The spatial
discretization of the equations, i.e., a description of our finite volume method, is given
in Section 3.2. Special attention is paid to the connection problem, which occurs at the
grid interface, when coupling the spherical grid part with the stereocaps. Numerical results
from calculations on combined grids and on fully lat–lon grids are given in Section 4.
Calculations are done on test case 2 of the test set in [27], which is standard for testing
new numerical methods for solving the SWEs in spherical geometry. Test case 2 provides
us with a good nonlinear test to evaluate the scheme’s ability to handle the poles. Since
the test set consists of problems with smooth flow patterns, it does not provide a test to
reveal all favorable features of our scheme. Therefore, the objective of this paper can best
be summarized as a first validation of whether the Osher scheme applied on a combined
grid yields an appropriate candidate to solve the SWEs in spherical geometry. The main
conclusions of our investigations are formulated in Section 5.

2. THE SHALLOW WATER EQUATIONS

Since they cover important aspects of the horizontal dynamical behavior of the atmo-
sphere, the SWEs on the sphere suffice as a first prototype of a circulation model. Through
the laws of conservation of mass and momentum, the SWEs on the sphere can be derived to
describe the behavior (velocities and fluid depth) of a shallow homogeneous incompress-
ible and inviscid fluid layer on the earth. In other words, we assume that the atmosphere
can be regarded as a thin layer of air in which the density is uniform and constant, and
viscous effects can be ignored. By using the SWEs, it is further assumed that the velocity
component normal to the earth surface, the vertical component, can be neglected compared
to the horizontal velocity component. Furthermore, the vertical component of the Coriolis
acceleration is neglected in comparison with gravity. The acceleration of gravity,g, is as-
sumed to be constant, containing both the effects related to the centrifugal force and the
gravitational attraction of the earth. The pressure gradient force is considered to be hydro-
static. The SWEs then follow from the Navier Stokes equations on the rotating sphere by
integration over the fluid depth (depth-averaging); for details see [7]. A derivation of more
realistic atmospheric primitive equations can be found in [7, 10].

2.1. The Shallow Water Equations in Spherical Coordinates

Let (λ, φ, t) denote the independent variables longitude (λ ∈ [0, 2π)), latitude (φ ∈
[−π

2 ,+π
2 ]), and time (t ≥ 0). Let u be the velocity in the longitudinal direction,v the

velocity in the latitudinal direction, andH the depth of the fluid layer. Leth be the height of
the free surface above the sphere at sea level,h = H + hs, wherehs accounts for the orog-
raphy of the earth associated with the height of mountains. Further, letu denote the hori-
zontal velocity field(u, v) defined byu = a cosφ dλ

dt andv = adφ
dt . Let f denote the Coriolis

parameter, 2Ä sinφ, withÄ the angular velocity of the earth,a the radius of the earth, and
g the gravitational constant. The SWEs on the sphere in flux form can then be formulated
as

∂H

∂t
+∇ · (Hu) = 0, (2.1)
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∂Hu

∂t
+∇ · (Hu u) =

(
f + u

a
tanφ

)
Hv − gH

a cosφ

∂h

∂λ
, (2.2)

∂Hv

∂t
+∇ · (Hv u) = −

(
f + u

a
tanφ

)
Hu− gH

a

∂h

∂φ
, (2.3)

where the divergence operator is defined by

∇ · u ≡ 1

a cosφ

[
∂u

∂λ
+ ∂v cosφ

∂φ

]
.

The right-hand sides in the momentum equations (2.2) and (2.3) represent, respectively, the
Coriolis force, the hydrostatical pressure gradient force, and an additional term due to the
relative motion in the rotating coordinate system in longitudinal and latitudinal direction,
see [10].

2.2. The Shallow Water Equations in Stereographic Coordinates

The spherical formulation of the SWEs (2.1)–(2.3) has the disadvantage that it is singular
at the poles. To circumvent this problem, the SWEs can be formulated in the stereographic
coordinate system using a different stereographic projection on each hemisphere. Since
these projections are only singular in opposite poles, no singularity problem arises. We
note that the stereographic projection is conformal, so the general form of the equations is
preserved.

The stereographic projection in terms of the latitude-longitude coordinates is defined by

xst = a mcosφ cosλ, (2.4)

yst = a mcosφ sinλ, (2.5)

wherem is the map factor

m= 2

1+ α sinφ
, (2.6)

with α distinguishing between the northern (α = 1) and the southern hemisphere projection
(α = −1). The poles are directly projected onto the origin of the stereographic planes. The
northern hemisphere is projected from the south pole onto the northern stereographic plane,
which is the plane locally tangent to the sphere at the north pole; see Fig. 1. Likewise, the
southern hemisphere is projected from the north pole onto the southern stereographic plane,
which is locally tangent to the sphere at the south pole. A description of the construction
of the stereographic projection can be found in Appendix A of [11]. Note that the positive
stereographicxst axis for both the northern and the southern hemisphere corresponds with
the intersection of the half-planeSλ=0 and the corresponding stereographic plane. Likewise,
the positive stereographicyst axis corresponds, for both hemispheres, with the intersection
of the half-planeSλ=π/2 and the corresponding stereographic plane. Before we give the
SWEs in the stereographic formulation, as found, for instance, in [2, 16, 26], we need to
define the velocity field in the new stereographic coordinate system. LetU = (U,V) be the
velocity field in stereographic coordinates withU the velocity in thexst direction andV the
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FIG. 1. The stereographic planes for the northern and southern hemisphere projections.

velocity in yst direction. We have

U =
(

U
V

)
=
(

m−1 dxst
dt

m−1 dyst

dt

)
,

wheredxst
dt , dyst

dt are the usual total derivatives and1
m is a scale factor withm as given in (2.6).

When we now consider the momentum equations in the stereographicxst andyst directions,
the stereographic formulation of the SWEs in flux form reads

∂H

∂t
+∇ · (HU) = 0, (2.7)

∂HU

∂t
+∇ · (HUU) =

[
α f − (xstV − ystU )

2a2

]
HV −mgH

∂h

∂xst
, (2.8)

∂HV

∂t
+∇ · (HVU) = −

[
α f − (xstV − ystU )

2a2

]
HU −mgH

∂h

∂yst
, (2.9)

where the divergence operator is defined by

∇ · (AU) ≡ m2 ∂

∂xst

(
AU

m

)
+m2 ∂

∂yst

(
AV

m

)
. (2.10)

This formulation is derived in Appendix B of [11].
To complete the discussion on the two different coordinate systems, we here give the

relations between the stereographic and spherical velocity components,

U = −u sinλ− αv cosλ, (2.11)

V = u cosλ− αv sinλ. (2.12)

These relations, which of course are valid only outside the poles, are needed in Section 3.2.4.
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3. SPATIAL DISCRETIZATION

In the past, several types of grids have been proposed to circumvent the problems related
to solving the SWEs on a global lat–lon grid. Two examples are the composite cubic grid
[17, 18] and the icosahedral grid [24]. The first yields a nonconformal mapping of the sphere
onto a cube. The latter grid consists of triangles.

In this section we introduce another grid. Our motivation is to provide a grid on which
calculations are simple and straightforward. Therefore we aim at a grid distribution which
can be conformally mapped onto a rectangular computational domain without any singular
points.

3.1. Using Stereographic Grids

Over the years several suggestions have been made to circumvent the singularity prob-
lem which arises at the poles when one tries to solve the SWEs in spherical coordinates.
In 1956 Phillips [16] studied this problem. He suggested covering the sphere with three
different coordinate systems. On part of the northern as well as on the southern hemi-
sphere he used a stereographic coordinate system centered at the poles. In between those
two regions he chose a mercator projection. His distribution of the coordinate systems is
illustrated in Fig. 2a. To couple the different coordinate systems, Phillips had to interpolate
from points in neighboring grids whenever a variable outside the current grid part was
needed. In 1975 Stoker [22] showed that these interpolations could contribute to loss of
mass.

In 1977 Starius [21] introduced the composite mesh method. Like Phillips, he used
multiple coordinate systems, but he avoided interpolations within neighboring grids by
letting the grids, corresponding with the different coordinate systems, overlap. To pros-
per from both methods, Browninget al. [2] combined the ideas of Starius and Phillips.
They applied the composite mesh method to the SWEs by using two stereographic coor-
dinate systems centered respectively at the north and south pole and extended beyond the
equator.

Our approach is also based on the ideas of Phillips; that is, we use three different nonover-
lapping coordinate systems, where stereographic coordinate systems are applied in the
northern and southern polar areas. In the intermediate region, however, our choice of the

FIG. 2. Distribution of the three different coordinate systems in Phillips’ approach (a) and our approach (b).
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coordinate system differs from Phillips’. Since spherical coordinates are natural and easily
implemented in regions away from the poles, we prefer a spherical coordinate system in
the intermediate region. Furthermore, lat–lon grids are still standard in meteorological ap-
plications. A further differentiation from the Phillips method concerns the coupling of the
different coordinate systems. Although this subject is not addressed until Section 3.2, we
state here that with our choice of a finite volume method we are able to avoid the interpo-
lation problems found by Phillips. Our distribution of the coordinate systems is shown in
Fig. 2b.

In this paragraph we discuss the exact distribution of the three different coordinate sys-
tems across the sphere. As mentioned before, we prefer to use a lat–lon grid in a region
away from the poles. We define this region asRII = {(λ, φ,a): λ ∈ [0, 2π), φ ∈ [−φ̄, φ̄]
with φ̄ < π

2 }. From an illustrative point of view we assume that our lat–lon grid has a
uniform distribution. Note that more advanced grid distributions are possible. In Section 4,
for instance, we apply a reduced lat–lon grid. To find a suitable grid distribution in the
stereographic regions, we project the uniform lat–lon grid of regionRII onto the stereo-
graphic planes, as illustrated for one hemisphere in Fig. 3. Note that meridians and parallels
correspond with respectively dashed and solid lines. In the middle of the resulting pro-
jection we place a square with bottom left-hand corner(xst, yst) = (−xr ,−xr ) and top
right-hand corner(xst, yst) = (xr , xr ), xr > 0. The corresponding regions on the sphere
are denoted by region I (northern hemisphere) and III (southern hemisphere). To secure a
proper fit between the grids on regions I, III, andRII , we extend the projected meridians
until they intersect with the squares. The resulting cells between these regions are added
to regionRII giving the region II shown in Fig. 2b. The solid lines in Fig. 4 correspond
with the cell edges. We then demand thatNλ defined asNλ = 1

1λ
is a multiple of eight.

Under this condition the intersection points have mirror images on the opposite edge. Af-
ter these points are connected, a nonuniform rectangular grid distribution on the square
results; see Fig. 4a. The total grid distribution over the sphere is now fully known; see
Fig. 4b. Finally, we remark thatxr , Nλ and φ̄ are still free parameters. Exact values are
given for each test case. These values affect, for instance, the CFL number, the meshwidth

FIG. 3. Northern hemisphere projection from the south pole of a uniform lat–lon grid. Dashed lines correspond
with meridians (λ constant). Solid lines correspond with parallels (φ constant).



SPATIAL DISCRETIZATION OF SWEs VIZ., OSHER’S SCHEME 549

FIG. 4. Different views of the grid distribution over the northern hemisphere.

factors, and the accuracy. For visualization purposes we usedNλ = 56, xr = 0.32279a,
andφ̄ = 57.8◦.

3.2. The Semi-Discrete System in General Terms

Without the Coriolis and additional forces, the SWEs closely resemble the Euler equa-
tions, which can be found in, for instance, gas dynamic applications. For the full set of
primitive equations this resemblance is even more explicit. Much theory concerning the
space discretization of the Euler equations has already been developed; see, for instance,
[9]. In our approximation method we gratefully adopt existing ideas from this theory.
In this section we will describe the semi-discrete system for the SWEs (2.1)–(2.3) and
(2.7)–(2.9) with special attention to the coupling between the spherical and stereographic
grids.

3.2.1. Main Outline of the Finite Volume Method

We begin this section with a main outline of our method. To guarantee conservation of
mass and momentum in our semi-discrete system or, in other words, to respect the underlying
physical conservation laws, we use the finite volume method, which is standard practice for
the Euler equations. We focus on the stereographic region I. Similar results can be derived
for the spherical region II and for region III. Calculations are done in the computational
domain, which results after projection of regions I, II, and III on the regions associated with
the corresponding coordinate systems. In the computational domains regular, (non-)uniform
rectangular grids occur.

LetÄi, j be a grid cell with boundaryδÄi, j . We denote its four neighbors byÄi±1, j and
Äi, j±1. The boundary between two neighboring cells, for instance, betweenÄi+1, j andÄi, j ,
is denoted byδÄi+1/2, j . ni+1/2, j = (nxst, nyst) is the outwardly directed unit normal along
this boundary.1xi, j and1yi, j are respectively the lengths ofδÄi, j±1/2 andδÄi±1/2, j ; see
Fig. 5. We associate with each grid cell its cell centerxst i, j

= (xsti, j , ysti, j )with state variable
qi, j = (Hi, j , Hi, j Ui, j , Hi, j Vi, j ) and we assume that the state variable is constant over each
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FIG. 5. The grid cellÄi, j in the stereographic coordinate system.

cell. The finite volume method now gives

∂qi, j

∂t
+ m2

i, j

1xi, j1yi, j

∮
δÄi, j

1

m
Fnxst +

1

m
Gnyst dS= −( f

xst

(
qi, j , xst i, j

)+ f
yst

(
qi, j , xst i, j

))
,

(3.1)

whereFandG are the fluxes in stereographicxst andyst direction,

F(q) =
(

HU, HU2+ 1

2
gH2, HU V

)T

,

G(q) =
(

HV, HU V, HV2+ 1

2
gH2

)T

,

and

f
xst
(q, xst) =

(
0,−

[
α f − (xstV − ystU )

2a2

]
HV +mgH

∂hs

∂xst
+ 1

4a2
gH2xst, 0

)T

,

f
yst
(q, xst) =

(
0, 0,

[
α f − (xstV − ystU )

2a2

]
HU +mgH

∂hs

∂yst
+ 1

4a2
gH2yst

)T

.

To respect the characteristic directions associated with the hyperbolic character of our
equations, we apply an upwind scheme to discretize the integral in (3.1). Within the group
of finite volume upwind methods we distinguish two different categories, concerning flux
vector splitting (FVS) and flux difference splitting (FDS) methods. For a detailed descrip-
tion of both methods we refer to [9]. Methods from the first category do not suffice as
discretization schemes when applied to the SWEs. The condition that the Jacobian of the
flux vectorFwith respect toq is homogeneous of degree 1 (see [9]) is not fulfilled. We apply
Osher’s approximate Riemann solver [14, 15], which makes an excellent choice from the
group of FDS methods. Osher’s scheme is robust and second-order accurate, when com-
bined with the right state interpolation [23]. Furthermore, from a future perspective, it has a
logical extension to more realistic primitive equations and a consistent boundary treatment.



SPATIAL DISCRETIZATION OF SWEs VIZ., OSHER’S SCHEME 551

The last argument made us decide in favor of Osher’s approximate Riemann solver before
Roe’s, which is often used in gas dynamics applications.

The semi-discrete system reads

∂qi, j

∂t
+ m2

i, j

1xi, j1yi, j

[
T−1(0)F(O)

(
T(0)qL

i+ 1
2 , j
, T(0)qR

i+ 1
2 , j

) 1yi, j

mi+ 1
2 , j

+ T−1

(
π

2

)
F(O)

(
T

(
π

2

)
qL

i, j+ 1
2
, T

(
π

2

)
qR

i, j+ 1
2

)
1xi, j

mi, j+ 1
2

+ T−1(π)F(O)
(
T(π)qL

i− 1
2 , j
, T(π)qR

i− 1
2 , j

) 1yi, j

mi− 1
2 , j

+ T−1

(
3π

2

)
F(O)

(
T

(
3π

2

)
qL

i, j− 1
2
, T

(
3π

2

)
qR

i, j− 1
2

)
1xi, j

mi, j− 1
2

]
=−( f

xst

(
qi, j , xst i, j

)+ f
yst

(
qi, j , xst i, j

))
, (3.2)

whereT(θ) is a rotation matrix defined by

T(θ) =
1 0 0

0 cosθ sinθ
0 −sinθ cosθ

 (3.3)

andF(O) is the Osher flux given as

F(O)(q
L,qR) = 1

2
(F(qL)+ F(qR))− 1

2

∫ qR

qL
|A(q)| dq. (3.4)

A is here defined as the Jacobian of the fluxvectorF with respect toq, A = ∂F/∂q. The
absolute value of this Jacobian is defined by

|A(q)| = P(q)|3|P−1(q),

whereP and3 result from diagonalizing the Jacobian matrix asA = P3P−1. Note that the
Osher fluxes in (3.2) describe local fluxes; i.e., they point in the direction of the outwardly
directed unit normal on the corresponding boundary. The Osher flux (3.4) approximates the
local flux across a boundaryδÄ, which results when at the left and the right of this boundary
the constant statesqL andqR are found.

So far, we have not mentioned the evaluation of the constant states. It is through these
evaluations that we are able to properly couple the different grids. Furthermore, the state
evaluations determine the accuracy of our scheme. On a uniform grid, second-order accuracy
can be proven [19]. We attend to this topic in the next section. It remains to say that the
Osher scheme is special for its choice of the integration path in its flux (3.4). Using the Osher
flux boils down to a maximum of five flux evaluations,F(q), per cell boundary. In the case
of the most common atmospheric flow patterns, i.e., flows where we have|u| ≤ √gH, we
find that the Osher flux requires only one flux evaluation per cell boundary, when we use the
P-variant Osher path suggested by Hemker and Spekreijse [8]. Details of the construction
of the integration path and the Osher flux can be found in Appendix C of [11].
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3.2.2. Determination of the Constant States

In this section we define the constant states. We still focus on the stereographic region
zooming in on the state evaluation in thexst direction. The states in theyst direction are
defined in a similar way. We apply 1D state interpolation; i.e., the stateqL

i+ 1
2 , j

only depends

on the states of neighboring cells in thexst direction. For the remaining part of this section,
we suppress the indexj in our notation. To define the constant states, we use the (κ = 1/3)
scheme [23]. On a uniform grid it reads

qL
i+ 1

2
= qi + (1− κ)

4
(qi − qi−1)+ (1+ κ)

4
(qi+1− qi ),

(3.5)

qR
i+ 1

2
= qi+1+ (1− κ)

4
(qi+1− qi+2)+ (1+ κ)

4
(qi − qi+1).

Unfortunately, our grid in the projected stereographic region is nonuniform. When the
grid is sufficiently smooth, this discrepancy is often circumvented by simply applying the
existingκ scheme (3.5). Although this condition holds for our grid, we do not adopt this
approach. We wish to avoid any additional errors which might prevent us from properly
identifying the influence of the coupling between the different grids. Therefore, we have
applied a modification of theκ scheme (3.5) for nonuniform grids. The general form of this
modifiedκ scheme can be found in Appendix D of [11] for different values ofκ. The general
form is defined as a function,Iκ , with the states and cell widths of neighboring grid cells
in the interpolation direction as arguments. The standard nonuniform state interpolation is
represented in Table I.

Near the grid interface between the stereographic and the spherical region (see Fig. 4a),
the stencil of the nonuniform (κ = 1/3) scheme is too large, demanding state variables from
outside the stereographic region. To avoid transformations and difficulties associated with
the kink in the grid cells, we regard the grid interface as a real boundary. This means that
locally we have to reduce the size of our stencil. To that end we have also formulated the
nonuniform equivalents of the 2-point central(κ = 1) scheme, the 2-point upwind(κ = −1)
scheme, and the 3-point upwind(κ = 1/2) scheme. Figure 6 shows which interpolation
scheme is applied on each cell boundary. The associated state interpolations are given in

TABLE I

The Different State Interpolation Methods Used Near the Grid Boundary

Left Right

A qL
1
2
= Transformation qL

N+ 1
2
= I−1(qN−1,qN , `N−1, `N)

qR
1
2
= I−1(q2,q1, `2, `1) qR

N+ 1
2
= Transformation

B qL
3
2
= I1(q1,q2, `1, `2) qL

N− 1
2
= I 1

2
(qN−2,qN−1,qN , `N−2, `N−1, `N)

qR
3
2
= I 1

2
(q3,q2,q1, `3, `2, `1) qR

N− 1
2
= I1(qN ,qN−1, `N , `N−1)

C qL
5
2
= I 1

2
(q1,q2,q3, `1, `2, `3) qR

N− 3
2
= I 1

2
(qN ,qN−1,qN−2, `N , `N−1, `N−2)

D
qL

i+ 1
2
= I 1

3
(qi−1,qi ,qi+1, `i−2, `i−1, `i , `i+1, `i+2),

qR

i+ 1
2
= I 1

3
(qi+2,qi+1,qi , `i+3, `i+2, `i+1, `i , `i−1)

Note.The indices A, B, C, and D here correspond with the different cell boundary situations
illustrated in Fig. 6.
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FIG. 6. Illustration of the cell boundaries, where interpolation scheme other than standard is needed.

Table I. Note that although it is a 3-point interpolation scheme, the (κ = 1/3) scheme,
as opposed to the (κ = 1/2) scheme, cannot be applied at the cell boundariesδÄ5/2 and
δÄN−3/2, because in these cases a cell width from outside the stereographic region is needed.
In the next section, we will discuss the transformation entry in Table I.

3.2.3. The Finite Volume Method and the Constant States on the Spherical
Computational Domain

The same line of semi-discretization as described in Section 3.2.1 is applied to derive
the semi-discrete system for region II; see Fig. 2b. Note that for this region calculations are
done on the(λ, φ) plane. The semi-discrete system easily follows through Eqs. (3.2)–(3.4)
when we replacemi, j , 1xi, j , 1yi, j , f

xst
, f

yst
, andq successively by 1/(a cosφi, j ), 1λi, j ,

1φi, j , f
λ
, f

φ
, andq = (H, Hu, Hv), where

f
λ
(q, r ) =

(
0,−

(
f + u

a
tanφ

)
Hv + gH

a cosφ

∂hs

∂λ
, 0

)T

,

f
φ
(q, r ) =

(
0, 0,

(
f + u

a
tanφ

)
Hu+ gH2 sinφ

2a cosφ
+ gH

a

∂hs

∂φ

)T

.

Note that the form of the flux vectorsF andG remains the same, since both coordinate
systems are conformal.

To evaluate the constant states on region II we again use 1D state interpolation. This
time it concerns interpolation in theλ or φ direction depending on the cell boundary under
consideration. As standard interpolation scheme the(κ = 1/3) scheme is applied. In the
λ direction this scheme can be applied everywhere, because, in that direction, our grid is
uniform and has no grid boundaries. In theφ direction we have to account for the grid
interface between the spherical and the stereographic grids. We treat this interface as if it
concerns a piecewise constant real boundary approximating the cell boundaries by the lines
φ = φi,Nφ+1/2; see Fig. 7. The resulting, partially nonuniform grid distribution resembles
the one in the stereographic direction. Therefore, the associated state interpolations easily
follow by applying Table I in theφ direction.

3.2.4. Interaction between the Different Computational Domains

It remains to discuss the transformation entry in Table I. We again turn to the stereographic
computational domain associated with region I and focus on thexst direction; see Fig. 6.
At the grid interface between region I and II the computational domains of these regions
interact. To find the statesqL

1/2 andqR
N+1/2 in stereographic variables, we transform the states

in spherical variables found at the same cell interface boundary in the computational domain
associated with region II. The word “transformation” here indicates that we must convert
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FIG. 7. Projection of the northern hemisphere part of region II on the(λ, φ) plane in combination with the
approximated cell distribution at the grid boundary.

the velocity fieldu= (u, v) into its stereographic representation. Note that the constant
states in spherical variables are calculated by one-sided(κ = −1)-state interpolation in the
φ direction. This way of state evaluation yields that at every cell interface boundary, the
1D state interpolation to obtainqL

1/2 andqR
N+1/2 is performed in a different direction, i.e.,

in the direction of the projected meridiansλ1/2 andλN+1/2. In the case of interpolations
in theφ direction, the transformation entries, i.e.,qL

1/2 andqR
Nφ+1/2 in spherical variables,

follow after transformatoin of the corresponding constant states in stereographic variables
found at the same cell boundaries in the computational domain of region I. Here the word
“transformation” means that we must convert the velocity fieldU= (U,V) into its spherical
equivalent. Note that, depending on the cell’s position, the constant state in stereographic
variables concerns a constant state calculated by one-sided (κ = −1)-state interpolation in
xst or yst direction.

We conclude this section with some remarks on accuracy. In more dimensional problems
a finite volume method is at most second-order accurate. To provide an order estimate we
cite Spekreijse [19]. For a uniform grid, he proved, that a scheme like (3.2) is second-order
accurate for interpolations based on theκ scheme. On a large part of our domain, i.e., almost
everywhere on the spherical region (see Section 3.2.3), his estimate is valid, because our
grid is uniform. However, since we combine different grids, it is difficult to give the exact
order of our scheme across the whole sphere. It is obvious that we endure some accuracy loss
around the interface, which will be referred to as the connection problem. To be conclusive
about its severity, we will give a numerical order estimate in Section 4.

4. NUMERICAL TESTS

In this section we focus on two main objectives. First, we wish to establish to what extent
the introduction of the stereographic grid resolves the problems related to the use of a global
spherical coordinate system. Second, we wish to validate our spatial discretization scheme
or, in other words, how Osher’s scheme behaves, when applied to the SWEs on the sphere,
and how accurate its results are.

To meet the necessity of a good benchmark to test new numerical methods for solving
the SWEs in spherical geometry, Williamsonet al. [27] developed a test set, containing
seven different test cases of increasing complexity. We concentrate on test case 2 of this test
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set, i.e., on the global steady state nonlinear zonal geostrophic flow. Test case 2 provides us
with a good test to examine the scheme’s ability to handle the poles. Furthermore, it serves
as a test for our Osher scheme, since it includes nonlinear aspects of the SWEs. As holds
for the whole test set, test case 2 is not entirely appropriate to demonstrate all favorable
features of our scheme, i.e., its behavior around strong gradients. The problems in the test
set have solutions with rather smooth flow patterns. Hence it is suitable for a first assessment
of accuracy behavior. Besides test case 2, we successfully solved test cases 1 and 6, i.e.,
advection of a cosine bell over the pole and the Rossby–Haurwitz wave. To save space we
present results only for test case 2. In future work we will attend to the other cases.

4.1. Test Case 2: Global Steady State Nonlinear Zonal Geostrophic Flow

Test case 2 concerns a steady-state analytic solution to the non-linear SWEs. It consists
of a solid body rotation with the corresponding geostrophic height fieldH . A parameterα
is used to specify the angle between the axis of the solid body rotation and the polar axis of
the spherical coordinate system:α = 0 indicates equatorial flow andα = π/2 yields flow
across the pole. The analytic solution of test case 2 reads

H = h0−
(

aÄu0

g
+ u2

0

2g

)
(−cosλ cosφ sinα + sinφ cosα)2, (4.1)

u = u0(cosφ cosα + sinφ cosλ sinα), (4.2)

v = −u0 sinλ sinα, (4.3)

where the Coriolis parameterf =2Ä(−cosλ cosφ sinα+ sinφ cosα)andu0=38.61 m/s,
h0 = 3.00× 103 m. To be consistent with the article of Williamsonet al.[27], we tested our
code forα = 0, 0.05,π/2− 0.05, andπ/2, where the second and third parameter values
were added to avoid symmetries. In this article we will not present all the results, as our code
produced good results for either value. We will concentrate on tests with parameter value
α = π/2, since for these tests the corresponding velocity components initiate the strongest
flow across the poles. We remark that these kind of flows can indeed be encountered in
practical situations.

In addition to the fact that we encounter a singularity problem when we apply the spherical
formulation of the SWEs in the poles, we have to deal with some problems when approaching
the poles. Figure 8 clearly illustrates the demand for additional caution near the poles. This
figure represents the analytic longitudinal and latitudinal velocity components,u andv,
found in the cell centers of an underlying uniform lat–lon grid in case of flow across the
poles (α = π/2). To emphasize our point we give the velocity componentsu andv, which
follow from (4.1)–(4.3),

u = u0 sinφ cosλ, (4.4)

v = −u0 sinλ. (4.5)

The figure shows that the spherical velocity components strongly vary in the polar area,
bringing about difficulties in numerical approximation methods. To properly represent these
velocity components, a fine grid resolution, especially in the longitudinal direction, is nec-
essary. However, too many grid cells can lead to problems for integration methods related
to stability.
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FIG. 8. Representation of the analytic longitudinal velocity componentu (left) and latitudinal velocity com-
ponentv (right) on a global uniform lat–lon grid in case of global steady-state nonlinear zonal geostrophic flow
across the pole(α = π/2).

We discuss two remedies to these approximation and stability problems. First, we can
decide to solve the SWEs on a stereographic grid. On a stereographic grid no severe resolu-
tion problems arise, as the velocity componentsU andV vary much less than the spherical
ones; see Fig. 9. Second, we can consider the reduced grid approach. In that case, the lat–lon
grid is coarsened in the longitudinal direction at given latitudes (for details, see [1, 25]).
Both remedies suffer some problems though. On a stereographic grid, we are confronted
with a connection problem at the equator when we try to combine the stereographic grids
on the northern and southern hemispheres (see Fig. 9). On a (nearly) global lat–lon grid, we
are not allowed to apply the reduced grid approach to its fullest extent. Repeated reductions
to arrive, for instance, at four remaining grid cells next to the poles are inadmissible, since
in that case the grid near the poles is too coarse to represent the strongly varying velocity
components. With a combination of both remedies, i.e., a combined grid with a reduced

FIG. 9. Representation of the analytic stereographic velocity componentsU (left) andV (right) on a “global”
uniform stereographic grid in case of global steady state nonlinear zonal geostrophic flow across the pole.
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FIG. 10. Projection of a combined grid consisting of a reduced lat–lon grid away from the poles and a
stereographic grid at the two polar caps onto the cartesian(x, y) plane(z= 0). Two reductions were applied.

lat–lon grid away from the poles and a stereographic grid at the two polar caps, we can
avoid these problems and benefit from either advantage (see Fig. 10).

In the remaining part of this section we will address the following questions concerning
our grid. Do the numerical results confirm the problems suggested when calculating on
a global reduced lat–lon grid? Which factors determine the actual form of a combined
grid, or in other words, how large should the stereocap be and how many reductions are
allowed? And, how accurate are the results when calculated on a combined grid with realistic
refinement?

4.1.1. Experiments on Global Lat–Lon Grids

The pole singularity. For tests on a global lat–lon grid to make sense, we must account
for the nonexistence of the spherical fluxesFandG in the poles. In practice, this problem is
overcome by assuming a total zero flux across the boundaries corresponding to the poles.
The question is whether the results significantly suffer from this assumption, both near
and away from the poles. In fact, when the results do suffer from this assumption, we
should reconsider investigating the global reduced lat–lon grid, since the results would be
inadequate without an accurate resolution of the singularity problem in the pole.

We first ran a set of tests on a rectangular global lat–lon grid, where we varied the amount
of gridpoints in theφ direction, thus moving the neighboring cell centers closer to the pole
with each test. Let nP define the amount of gridpoints in theφ direction and let1φ =
180◦/nP. In comparison with other tests, our grid distribution in theλ direction is rather
coarse(nL = 72). We must only make sure that the solution can be properly represented in
that direction. In this way we are able to reduce computing time and avoid problems related
to stability. The error measures onH are shown in Table II. For time stepping we used the
fourth-order Runge–Kutta method with small steps, such that the errorEr(H) represents
the spatial discretization error.Er(H) is defined as a maximum relative error,

Er(H) = max
(i, j )

∣∣∣∣Hi, j − H(λi , φ j )

H(λi , φ j )

∣∣∣∣,
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TABLE II

Error Measures onH for Different Values of nP Taken over

the Volumes Located Next to the Poles and over the Whole

Domain on a Rectangular Lat–Lon Grid (nL = 72)

Er(H)pole band Er(H)whole

nP= 36 2.1 · 10−3 9.8 · 10−3

nP= 72 1.1 · 10−3 5.7 · 10−3

nP= 180 8.7 · 10−4 5.3 · 10−3

whereH(λi , φ j ) gives the analytic solution ofH in cell center(i, j ). The max-norm is
taken over a specified region. Note that sinceH À 1, the relative error provides a good
indication of the accuracy of our results.

Table II clearly shows that in the band next to the poles the zero flux assumption does not
lead to an error increase when approaching the poles. We even observe a minor decrease
and the (relative) error certainly is sufficiently small for practical purposes. Moreover, the
error in the pole band is smaller than the error over the whole domain. Note that since nL
is fixed, convergence of the Osher scheme is not examined in these tests.

Pole resolution problem. As mentioned before and as discussed by Williamson and
Browning in [26], we encounter representation problems when we try to approximate the
spherical velocity components on a too coarse grid around the poles. The following tests
have been chosen to show the severity of this problem. We tested four different reduced
rectangular lat–lon grids, all having nL(0) = 64 grid cells in the longitudinal direction and
nP= 192 cells in latitudinal direction. nL(0) is here defined as the amount of grid cells
in the longitudinal direction on the unreduced grid part. When approaching the poles, we
halve the amount of grid cells in the longitudinal direction, whenever the cell width in that
direction projected onto the sphere, i.e.,a cosφ1λ, is reduced with a factor two following
the last reduction. The specific values for nL(0) = 64 and nP= 192 are chosen so that we
can arrive on a coarse grid within a few reductions and for each grid part, containing the
same amount of grid cells in longitudinal direction, enough grid cells in latitudinal direction
are guaranteed. Successively, we apply one, two, three, or four reductions at the latitudes
φ = 60◦, 75.9375◦, 82.5◦, and 86.25◦. The errors are displayed in Table III. This time we
concentrate on the absolute error,Ea(u), found for the velocity componentu instead of
for H , since this component suffers the most from the inadequacy to represent the flux

TABLE III

Error Measures on u Taken over the Whole Domain on a Global Reduced

Lat–Lon Grid with Different Levels of Reduction (nL(0) = 64 , nP = 192)

Ea(u) Grid partm

0 reductions, 0.32 0
1 reduction atφ = 60◦ 1.03 −1/1
2 reductions resp. atφ = 60◦, 75.9375◦ 3.67 −2/2
3 reductions resp. atφ = 60◦, 75.9375◦, 82.5◦ 15.18 −3/3
4 reductions resp. atφ = 60◦, 75.9375◦, 82.5◦, 86.25◦ 23.99 −4/4

Note.The second column displays on which grid partm the maximum error is located.
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on a coarse lat–lon grid. Furthermore, the absolute error is shown, because the velocity
component may vanish in certain points of the globe; see; (4.4) and (4.5).Ea(u) is defined
as the maximum absolute error

Ea(u) = max
i, j
|ui, j − u(λi , φ j )|,

whereu(λi , φ j ) represents the analytic velocity componentu in cell center(λi , φ j ). The
maximum is taken over the whole grid, where the second column entry indicates on which
grid partm the maximum error is found. The indexm denotes the grid part found between
the|m|th and(|m| + 1)th reduction. We indicate the different grid parts at the northern hemi-
sphere with positive values ofm and at the southern hemisphere with negative values ofm.

Given that the analytic longitudinal velocity componentu has a maximum of 38.61 m/s,
the results speak for themselves. It is obvious that a significant number of cells next to the
poles are needed to properly represent the velocity components. For example, in this case
and starting from nL(0) = 64, two reductions giving 16 cells next to the poles already result
in a maximum relative error in the longitudinal velocity componentu of about 10%. Note
that the maximum errors are found in the grid part closest to the pole.

Order tests. In this part we provide a numerical order estimate for our spatial discretiza-
tion scheme. As described in Section 3.2.4, we expect to find second-order accuracy on a
uniform grid. To verify this, we ran some tests on a global uniform lat–lon grid. We only per-
formed calculations on a band between latitudesφ = −60◦ andφ = 60◦ to avoid small steps
related to stability. On the other areas of the sphere we prescribed the analytic solution. Note
that in this way accuracy losses due to the zero flux assumption across the poles are circum-
vented. Successively, we applied a uniform lat–lon grid with nL= 72, 144, 288 and 576.
Table IV shows the relative error measures onH . We consider the max-norm over the band.

The order factor between two successive grids is given in the third column of Table IV. In
the case of second-order accuracy this factor should be 4. For the higher orders observed, we
have two possible explanations. First, the theoretical order estimate holds in the asymptotic
case, i.e., when nL approaches infinity. The order factor between the grids with nL= 576
and nL= 288 already approaches 4. Second, on the band between the latitudesφ = −60◦

andφ = 60◦, the flow has a strongly one-dimensional character which coincides with the
meridians. For a uniform grid Spekreijse [19] proved that a scheme like (3.2) is third-order
accurate for interpolations based on the(κ = 1/3) scheme in the 1D case. This might
explain why on the coarser grids our order factors are close to 8. Note that the value 5.1 can

TABLE IV

Error Measures on H for Different Values of nL

Taken over a Band between the Latitudesφ = −60◦

andφ = 60◦ on a Global Uniform Lat–Lon Grid a

Er(H)band
Er(H)bandnL/2
Er(H)bandnL

nL = 72 2.05 · 10−3

nL = 144 2.69 · 10−4 7.6
nL = 288 3.65 · 10−5 7.4
nL = 576 7.17 · 10−6 5.1

a Where we prescribed the analytic solution outside the band.
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TABLE V

Error Measures on H for Different Values of nL(0) Taken over the Whole Domain on a Global

Reduced Lat–Lon Grid (nP = nL(0)/2)a

Er(H)
Er(H) nL

2 (0)

Er(H)nL(0)

nL(0) = 72, 3 reductions resp. atφ = 60◦, 70◦, 80◦ 1.10 · 10−2

nL(0) = 144, 3 reductions resp. atφ = 60◦, 75◦, 82.5◦ 3.66 · 10−3 3.0
nL(0) = 288, 4 reductions resp. atφ = 60◦, 75◦, 82.5◦, 86.25◦ 3.40 · 10−3 1.1
nL(0) = 576, 4 reductions resp. atφ = 60◦, 75◦, 82.5◦, 86.25◦ 1.74 · 10−3 2.0
nL(0) = 288, 3 reductions resp. atφ = 60◦, 75◦, 82.5◦ 1.77 · 10−3 2.1
nL(0) = 576, 3 reductions resp. atφ = 60◦, 75◦, 82.5◦ 8.81 · 10−4 2.0

a Where grid coarsening is performed at the given latitudes.

then be attributed to the fact that on finer grids the volumes move closer to the boundary of
the band, where the one-dimensional character of our flow diminishes.

In case of a nonuniform grid we have no analytic order estimate. Therefore, to give
an indication, a numerical order estimate is computed. We evaluate the results found after
calculations on a global reduced lat–lon grid. We ran four tests, each time doubling the value
of nL(0) defined as the amount of grid cells in the longitudinal direction on the unreduced
grid part. We begin with nL(0) = 72. The cell distribution in the unreduced grid part is
uniform. We again coarsen our grid each time the cell width in the longitudinal direction
projected onto the sphere is reduced by a factor 2 compared to the preceding reduction.
In case of our grids, this rule yields three or four reductions. To make sure that our grid
is not too coarse in regions close to the poles, we also ran test on grids with nL(0) = 288
and nL(0) = 576 where three instead of four reductions were applied as was originally
prescribed by the reduction rule. The error measures onH , Er(H), are shown in Table V.
This time the max-norm is taken over the whole domain. The entries in the third column yield
the order factor. Per grid we give the amount of reductions and their corresponding latitudes.

First, the results show that the reduced grid approach leads to first-order accuracy. It
should be noted though, that the error estimate is calculated in the max-norm over the whole
domain. At the interface between the reduced grid parts we suffer from order reduction.
Along the rest of our domain nearly second-order accuracy is found. Again, the grid must not
be too coarse in the polar area. In case of nL(0) = 288 with four reductions, this condition
is obviously not fulfilled, resulting in almost no error reduction. Compared to unreduced
grids—see, for instance, the entry 9.82× 10−3 from Table II and 1.09× 10−2 in Table V—
the reduced grid approach results in a small accuracy loss on coarse grids. The accuracy
loss on finer grids will be larger since we find first-order accuracy on a reduced lat–lon
grid. However, its positive influence on the stability restriction for explicit time stepping
compromises its use. As long as we take special care to guarantee an acceptable amount of
grid cells next to the poles, the errors are sufficiently small for practical purposes.

We here omit an order estimate for calculations on a combined grid. As we will later show,
the results mimic the accuracy behavior found on the reduced lat–lon grids. Investigations
related to the connection problem are reported in the next section.

4.1.2. Placement of the Stereocap

As nicely illustrated by Fig. 9, in stereographic coordinates velocities over the poles
behave normal and smoothly and hence can be approximated with much greater accuracy
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FIG. 11. Projection of two combined grids (nL= 144) onto the cartesian(x, y) plane(z= 0), where the
stereocap in the right picture is moved closer to the pole.φ̄ = 47.5◦ (left) andφ̄ = 87.5◦ (right). Along the axes,
thex andy coordinates are given as multiples of the earth radius.

using a stereocap. However, we have also concluded that to cover the whole sphere a
stereographic grid must be combined with, for instance, a lat–lon grid, creating a connection
problem as examined in Section 3. In addition to the question of how this connection problem
influences the accuracy, we wish to answer the question of what value we should take for
φ̄, which we defined in Section 3.1 as the latitudinal boundary of the uniform lat–lon region
RII . We expect these questions to be related, since the largerφ̄, the smaller the cells in the
connection band. We ran four tests on a combined unreduced grid, having nL= 144 points,
i.e., with1λ = 1φ = 2.5◦, where we gradually changed̄φ. Figure 11 shows the combined
grids in case of the extreme values ofφ̄. We coupledxr defined in Section 3.1 as thexst

coordinate of the top right-hand corner of the stereocap toφ̄, following φxr = φ̄ +1φ/2.
φxr denotes the latitude corresponding to the stereographic coordinates(xst, yst) = (xr , yr ).
Table VI displays the different error measures onH , u andU over five different regions, i.e.,

TABLE VI

Error Measures on H, u, and U for Different Values of φ̄ on Four Combined

Uniform Lat–Lon Stereographic Grids (nL = 144)

Er(H)lat–lon grid part Er(H)equator Er(H)interface Er(H)stereo grid part Er(H)pole

φ̄ = 47.5◦ 1.40 · 10−1 1.35 · 10−1 4.56 · 10−2 5.10 · 10−2 3.86 · 10−2

φ̄ = 57.5◦ 7.58 · 10−2 3.64 · 10−2 3.27 · 10−2 1.41 · 10−2 7.14 · 10−3

φ̄ = 67.5◦ 2.15 · 10−2 1.90 · 10−2 1.14 · 10−2 6.57 · 10−3 2.94 · 10−3

φ̄ = 77.5◦ 2.48 · 10−3 2.30 · 10−3 2.31 · 10−3 7.42 · 10−4 3.00 · 10−4

φ̄ = 87.5◦ 1.29 · 10−3 1.29 · 10−3 6.67 · 10−4 6.33 · 10−4 6.00 · 10−4

Ea(u)lat–lon grid part Ea(u)equator Ea(u)interface Ea(U )stereo grid part Ea(U )pole

φ̄ = 47.5◦ 43.06 17.45 43.06 37.38 6.0 · 10−2

φ̄ = 57.5◦ 21.31 11.00 21.31 19.19 3.6 · 10−2

φ̄ = 67.5◦ 5.23 2.39 5.23 3.43 1.3 · 10−2

φ̄ = 77.5◦ 0.84 0.27 0.84 0.58 3.8 · 10−4

φ̄ = 87.5◦ 0.14 0.02 0.14 0.30 2.8 · 10−4

Note.We give the errorsEr(H), Ea(u), andEa(U ) over five different regions, i.e., over the uniform lat–lon grid
part, over the cells located at the equator, over the interface cells connecting the two grids, over the stereographic
grid parts, and over the cells next to the poles.
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over the uniform lat–lon grid part, over the cells located at the equator, over the interface
cells connecting the two grids, over the stereographic grid parts, and over the cells next to
the poles. Note that the interface cells, the cells located at the equator, and the cells next to
the poles are also included in the lat–lon grid part or the stereographic parts; see Section 3.1.
Er(H) again describes the max-norm of the relative error onH . Ea(u) andEa(U ) describe
max-norms of the absolute error onu andU , respectively.

As expected, Table VI shows that it is best to make the stereocap as small as possible,
restricting accuracy loss due to the connection problem at the grid interface. The influence
of reducing the size of the interface cells is particularly visible when concentrating on the
maximum absolute error of the velocities. We encounter an unavoidable accuracy reduction
at the grid interface. However, on grids with a small size stereocap this error is sufficiently
small. Furthermore, both errors onH andU are impressingly small at the poles. Comparing
the overall errorEr(H) for φ̄ = 77.5◦ with the second entry from Table V, we see that
our calculations on a combined grid with a stereocap result in the same overall accuracy
as the calculations on a compatible reduced grid. Note that this conclusion is true for
modest and small sized stereocaps. For large stereocaps the interface cells become too
distorted.

4.1.3. A Combined Grid with Realistic Refinement

Figure 11 shows that our conclusion should be handled with some consideration. When
performance issues are important, the resolution increase on the stereocap due to size
reduction can lead to a cut-back on the time-step caused by stability restrictions. However,
this problem is easily resolved when we add the reduced grid approach to our combined
grid. To show this, we end our numerical section on test case 2 of [27] by giving the results
of a test on a combined reduced grid with realistic refinements. The stereocap is placed such
thatφ̄ = 85.625◦, nL(0) = 576, and nP= 288. We apply three reductions, one at 60◦, one
at 75◦, and one at 82.5◦.

The results confirm our expectations. We find a maximum relative error onH over
our whole domain ofEr(H) = 8.6× 10−4 and a maximum absolute error onu, U of
Ea(u,U ) = 0.092. These errors show that a combined grid provides a good alternative to
a global reduced lat–lon grid; see Table V case nL(0) = 576 with three reductions. This
conclusion holds in particular when the CFL restriction demands a too coarse lat–lon grid
around the poles to maintain an acceptable time-step. This follows in comparing the smallest
grid sizes found on the two different grid types. Note that in either case the smallest step
size is found next to the poles. For the combined grid, the smallest grid size on the globe
approximately reads

√
2πa cosφ̄

nLinterface
. (4.6)

On a reduced lat–lon grid, the smallest grid size reads

2πa cos(90◦ −1φ)
nLinterface

. (4.7)

Based on (4.6) and (4.7), we give the smallest grid size ratio for1φ = 0.625◦, nLinterface= 72
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andφ̄ = 85.625◦. The ratio reads

1
2

√
2 cosφ̄

cos(90◦ −1φ) ≈ 4.95.

For explicit integration methods this ratio suggests a difference in computing time of ap-
proximately a factor of 5 in favor of the combined grid. Note that the time step restriction
can indeed be encountered in practical situations, since high-velocity components do occur
in the polar areas.

5. CONCLUDING REMARKS

Spectral methods currently dominate the field of approximation methods used in global
circulation modeling. Since spectral methods become relatively expensive on fine grids,
the demand for higher grid resolution and the better prospects for parallelization and local
grid refinement have renewed interest in gridpoint methods. In this paper we have studied
a sophisticated finite volume scheme for the spatial discretization of the SWEs in spherical
geometry, viz., Osher’s scheme [15] using theP-variant of Hemker and Spekreijse [8] for
the integration path in the flux evaluation and third-order upwinding for the determination
of the constant states. The scheme’s second-order accuracy, its robustness and its appre-
hension for the characteristic directions associated with the nonlinear equations, makes it
a possible competitor to spectral methods for computations on fine grids. Note that in case
of a combined grid, our method is second-order accurate in smooth regions away from the
grid interface and first-order otherwise.

We have paid special attention to the pole singularity and the associated CFL restriction.
We have examined a combined grid to thoroughly alleviate the associated problems. This
combined grid connects a stereographic grid in the polar regions with a lat–lon grid used
at low latitudes. We have found that it is best to keep the size of the stereocap rather
small to minimize connection errors at the grid interface. Since a small stereocap involves
small grid sizes at and near the cap, grid reduction in the lat–lon part can be used when
it is needed to avoid very small grid sizes. In this manner the time step limitation for
explicit integration methods emanating from the pole problem can be significantly reduced.
Therefore, the resulting combined grid is advocated to be used together with an explicit
integration scheme. In case time step stability plays a minor role, or when an implicit
type integration method is used, we advocate using only a lat–lon grid, possibly reduced,
because this approach is simpler. However, on lat–lon grids the singularity remains so that
in case of flow over the poles the grid should be sufficiently fine.

Our findings are based on test cases 1, 2, and 6 of the standard test set from [27]. To
save space we have shown results for test case 2 only. In the near future we will present
results on time integration aspects using the spatial discretizations described in the current
paper.
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